Synthetic studies toward the kempane diterpenes. Diels-Alder additions to bicyclic dienes

Chunjian Liu, Guanglin Bao and D. Jean Burnell *
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada AlB 3X7. E-mail: jburnell@mun.ca; Fax: 709-737-3702; Tel: 709-737-8535

Received (in Cambridge, UK) 5th June 2001, Accepted 2nd August 2001
First published as an Advance Article on the web 24th September 2001

Diels-Alder additions of 2,6-dimethyl-p-benzoquinone to the bicyclic dienes $\mathbf{2 4}, \mathbf{3 0}$ and $\mathbf{3 2}$ took place with very high regio-, stereo- and facial selectivity. Reduction and then alkylation of a tetracyclic adduct with 1,3 -dithienium tetrafluoroborate provided compound $\mathbf{5 6}$, which has the correct stereochemistry at three key carbons for elaboration to the kempane diterpenes. Exploratory reactions with tricyclic model compounds and with tetracyclic adducts have been used to assess the development of the desired stereochemistry about the decalin moiety. X-Ray structures for $\mathbf{5 2}$, 53 and 59 were determined.

Introduction

The kempanes (1-3, Fig. 1) are a small class of tetracyclic diterpenes that have been isolated in tiny amounts from the defensive secretions of soldiers of the termite species Nasutitermes kempae and Nasutitermes octopilis. ${ }^{1}$ An apparently rearranged congener, rippertane (4), has also been isolated from other nasute termites. ${ }^{2}$

There has been only one successful total synthesis of 1, by Dauben and co-workers. ${ }^{3}$ Unfortunately, an attempt by Paquette's group ${ }^{4}$ to synthesize $\mathbf{2}$ failed in the very last stage. In both Dauben's and Paquette's routes, the decalin system was used as the scaffold upon which first the five-, and then the seven-membered rings, were constructed. The only approach to 4 used α-santonin as the starting compound, ${ }^{5}$ but the completion of this synthesis has not yet been published. In contrast with the earlier efforts towards $\mathbf{1}$ and $\mathbf{2}$, we wanted to be able to produce all three kempanes from a common tetracyclic compound. This entailed a synthetic approach with intermediates carrying more functionality than either of the previous approaches. Herein are reported the results of exploratory reactions for the development of such a synthesis of the kempane diterpenes. This approach includes a number of options for the introduction of the methyl group at C-2a, and some model reactions to accomplish this are outlined. We previously communicated a route that produced the pentacyclic compound 5,

1

2

5

Fig. 1 Kempane diterpenes (1-3), rippertane (4) and the synthetic pentacyclic compound 5.
which bears oxygen functionality at all of the necessary positions, but $\mathbf{5}$ lacks the methyl group at C-2a. ${ }^{6}$ The initial stages of that work are described in detail here, also.

Results and discussion

Our initial retrosynthetic analysis is provided in Scheme 1. It is based on a conviction that establishing the correct relative stereochemistry at C-10a, C-10b and C-10c early in the synthetic sequence would allow for the development of the rest of the stereochemistry in a predictable manner. All three

Scheme 1 Initial retrosynthetic analysis. (Compound numbering in this Scheme follows that of the kempanes.)

Scheme 2 Initial reactions in Dauben's synthesis ${ }^{3}$ of 1. Reagents and conditions: $i, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{Zn}, \mathrm{AcOH}$, reflux.

Scheme 3 Synthesis of the diene precursors. Reagents and conditions: i, 1. TsNHNH ${ }_{2}, \mathrm{HCl}, \mathrm{THF}, 2.2 .2$ equiv. $\mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; ii, $\mathrm{Cl}_{2} \mathrm{CHCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{RT}$; iii, $\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH} ;$ iv, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{AcOH} ; v, l$. $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 2 . \mathrm{Me}_{2} \mathrm{~S} ; v i, 1: 15 \%$ aqueous $\mathrm{HCl}-\mathrm{THF}$, reflux, 12 h ; vii, LDA, MeI, THF-HMPA, $-78^{\circ} \mathrm{C}$; viii, (\pm)-CSA, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 25 h .
kempanes ($\mathbf{1}-\mathbf{3}$) might be derived from $\mathbf{6}$, which would arise by opening the acetal of 7 and aldol cyclization to establish the C-7a-C-8 bond. The relative stereochemistry at C-4a and C-7 of 7 was expected to be established in $\mathbf{8}$ by equilibration following reduction of 9 . Methylation of the enol ether function on the convex side of compound $\mathbf{1 0}$ would take place syn to the methyl at C-10c. The rigid diene lactone 11 was adopted for the key Diels-Alder step to provide rapid access to an adduct with well-positioned functionality. In order to ascertain that these transformations, and their order, might be feasible, three processes needed to be examined. Firstly, and most importantly, it was imperative that the Diels-Alder addition of 2,6-dimethyl-p-benzoquinone (12) to a diene such as $\mathbf{1 1}$ be assessed. It was not clear if the stereochemistry at C-10 would influence the selectivity of the cycloaddition. Secondly, a process was needed for the addition of the methyl group at $\mathrm{C}-2 \mathrm{a}(\mathbf{1 0} \longrightarrow \mathbf{9})$. The third objective was to examine the equilibration at $\mathrm{C}-4 \mathrm{a}$ and $\mathrm{C}-7$ to

Scheme 4 Diels-Alder reactions of four bicyclic dienes. Reagents and conditions: i, TBDMSOTf, $\mathrm{Et}_{3} \mathrm{~N}$; $i i$, 12, toluene, reflux, 3 days; $i i i$, LDA, TBDMSOTf, THF, $-78^{\circ} \mathrm{C}$ to RT; $i v$, LDA, TBDMSCl, THF-HMPA, $-78^{\circ} \mathrm{C}$ to RT; v, isopropenyl acetate, (\pm)-CSA, reflux, 4 days; vi, 12, toluene, reflux, 12 days.
give a compound with the relative stereochemistry of $\mathbf{8}$. This apparently trivial process was of some concern because of the low yield reported in the initial steps of Dauben's synthesis of 1. ${ }^{3}$ These are shown in Scheme 2. The Lewis acid-catalysed Diels-Alder reaction of $\mathbf{1 2}$ with isoprene, followed by reduction and equilibration of the adduct $\mathbf{1 3}$ gave the bicyclic diketone $\mathbf{1 4}$ in a yield of only 13%.
Our work began with the construction of possible precursors for a diene-lactone (Scheme 3). Enone-lactones 20 and 23 were prepared from 3-methylcyclohex-2-en-1-one by a process reminiscent of Corey's prostaglandin synthesis. ${ }^{7}$ Addition of dichloroketene to diene $\mathbf{1 5}$ took place with complete chemoand regiochemical control to provide 16. Similar reactions have been reported by Harding et al. ${ }^{8}$ Reductive removal of the chlorine atoms of $\mathbf{1 6}$ gave the ketone 17 , which in turn afforded only lactone $\mathbf{1 8}$ by a Baeyer-Villiger reaction with peroxyacetic acid. Ozonolysis of the double bond of $\mathbf{1 8}$ led to a rather unstable compound 19, so aldol cyclization was carried out immediately with dilute HCl to give $\mathbf{2 0}$. Our attempts to carry out the aldol cyclization under basic conditions led to very complex mixtures. The process outlined in Scheme 1 calls for a methyl-bearing diene (11), therefore $\mathbf{1 8}$ was methylated to give predominantly 21. Ozonolysis produced unstable 22, and aldol cyclization yielded 23.

With enone-lactones 20 and 23 in hand, assessment could begin of the relative importance in the Diels-Alder reaction of two variables in the diene, i.e., i. the presence and the relative stereochemistry of the methyl group at C-3, and ii. the identity
of the enol protecting group (Scheme 4). Firstly, the unmethylated diene $\mathbf{2 4}$ was obtained by treatment of $\mathbf{2 0}$ with TBDMStriflate and triethylamine. ${ }^{9}$ A toluene solution of $\mathbf{2 4}$ and the quinone $\mathbf{1 2}$ was heated under reflux for three days. Two adducts were detected in the crude product, and these were isolated by chromatography. The ${ }^{1} \mathrm{H}$ NMR data for the major adduct (80% yield) included nuclear Overhauser effect (NOE) enhancements that placed the methyl group on $\mathrm{C}-10 \mathrm{c}$ in the proximity of the hydrogens on C-10 and C-10b. These, and other NOE data, showed that the major adduct was the desired isomer $\mathbf{2 5}$. The minor adduct, which was isolated in only 6% yield, was identified as 26, the product of endo addition to the face of $\mathbf{2 4}$ anti to the lactone ring, but with regiochemistry opposite to the pathway that produced 25. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 6}$, the resonances for the hydrogens on $\mathrm{C}-10 \mathrm{~b}$ and $\mathrm{C}-10 \mathrm{c}$ were coupled $(J=5.3 \mathrm{~Hz})$. Furthermore, NOE enhancements established that the methyl at C-4a was on the same side of the rings as the hydrogens on $\mathrm{C}-10 \mathrm{~b}$ and $\mathrm{C}-10 \mathrm{c}$ and that the hydrogen on $\mathrm{C}-10 \mathrm{c}$ was close to a hydrogen on $\mathrm{C}-10$. Whereas high endo selectivity should be expected for Diels-Alder reactions of quinones, it was gratifying that the regioselectivity was good \dagger and the facial selectivity was excellent. Indeed, the facial selectivity with diene 24 was much superior to the facial selectivity reported by Overman and co-workers ${ }^{11}$ for Diels-Alder reactions of 3-methyl-1-vinylcyclopentene, which might be considered a simple model for the facial alternatives in 24.

The excellent stereoselectivity in the methylation of $\mathbf{1 8}$ to $\mathbf{2 1}$ and the lack of epimerization in the formation of $\mathbf{2 3}$ were compromised in the formation of diene $\mathbf{3 0}$ from 23. A 6:1 mixture of the epimeric dienes 30 and $\mathbf{3 2}$, respectively, was obtained when one equivalent of LDA was used to deprotonate 23. Two equivalents of LDA provided a $1: 6$ mixture, with $\mathbf{3 2}$ being the major epimer. (This stereogenic centre would ultimately disappear in the kempanes.) It was not clear that the Diels-Alder additions of the epimeric dienes would have the same selectivity. The methyl group of diene $\mathbf{3 2}$ extends into the concave space of molecule, and it seemed likely that this would engender conformational changes that might alter the selectivity. Diene 30 reacted with $\mathbf{1 2}$ to give only one adduct, 31, in 81% yield. The Diels-Alder reaction of $\mathbf{3 2}$ was like that of $\mathbf{3 0}$, and an 82% yield of the desired adduct $\mathbf{3 3}$ was obtained. NMR analysis did not reveal any other Diels-Alder adducts. Thus, the methyl group has no significant influence in the Diels-Alder reaction that is the key for this approach to the kempanes. The acetoxysubstituted diene $\mathbf{3 4}$ was prepared from $\mathbf{2 3}$ in order to examine
\dagger 1-Substituents on butadiene generally greatly dominate over 2-substituents in determining the regioselectivity of Diels-Alder reactions with methyl-substituted p-benzoquinones, even when the 2 -substituent is a stronger π-donor. ${ }^{10}$ It was therefore very surprising that, in our hands, the reaction of quinone $\mathbf{1 2}$ with diene 27, for which a 1-alkyl substituent and the oxygen substituent on the butadiene moiety should both direct the quinone to add in the same direction, gave $\mathbf{2 8}$ and 29 in ratio of only $2: 1$.

27
2Δ

28

29
the effect of this difference on the reactivity of the diene. The Diels-Alder reaction of $\mathbf{3 4}$ was very sluggish, giving a yield of only 50% after heating it in toluene with an excess of $\mathbf{1 2}$ for 12 days. Furthermore, two inseparable Diels-Alder adducts, 35 and 36, were obtained, in a ratio of only $4: 1$. Because of the poor reactivity of $\mathbf{3 4}$ and the modest regioselectivity, the use of an acetoxy-diene was not pursued further.
Adducts $\mathbf{3 1}$ and $\mathbf{3 3}$ lack only two of the carbons required for the kempanes. Each adduct would need a methyl group at C-2a (kempane numbering) and a carbon that will become C-8 during the cyclization of the final, seven-membered ring ($7 \rightarrow \mathbf{6}$ in Scheme 1). It was decided to try to introduce the latter carbon much earlier in the reaction sequence than shown in Scheme 1. Treatment of diene $\mathbf{3 0}$ with methyllithium afforded the hemiacetal 37 as a $2.2: 1$ mixture of epimers (Scheme 5). Diels-Alder

$37 \quad 38(31 \%)$

41
40

Scheme 5 Attempted opening and cyclization of hemiacetal. Reagents and conditions: i, $\mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}$; ii, 12, toluene, reflux, 2 days; iii, 5% aqueous $\mathrm{HCl}-\mathrm{THF}, \mathrm{RT}, 24 \mathrm{~h}$.
reaction of this mixture with the quinone $\mathbf{1 2}$ provided two products in almost equal amounts. These were 38, still a mixture of epimers, and 39 , which was obviously derived from 38 by dehydration. The total yield of adduct was 68%. Cyclization of the seven-membered ring was attempted by adding the mixture of $\mathbf{3 8}$ and 39 to dilute acid. It was hoped that the methyl ketone $\mathbf{4 0}$, unmasked by a reversible opening of the hemiacetal moiety of 38, might undergo aldol closure with dehydration to give a tetracyclic product such as 41 . This approach was overly optimistic. None of the cyclized product was detected in the reaction mixture. Instead, the hydrolysed and oxidized epimeric mixture 42 was obtained. Therefore, the early introduction of C-8 and the immediate cyclization of the seven-membered ring was abandoned in favour of the original sequence (Scheme 1).

Next, the question of introduction of the methyl at the encumbered C-2a of the kempanes was addressed. Adding a carbon onto the silyl enol ether moiety in adduct 25, 31 or 34 seemed like a way of ensuring that the carbon be added only at the desired position. Furthermore, the shape of these adducts, with cis ring junctions between the six-membered rings, was expected to allow the carbon to be added only onto the correct face. Attempts to methylate directly with, for instance, iodomethane failed, so attention turned to methods for indirect methylation. Most of these were failures as well. Some methods, e.g. $\mathrm{PhSCH}_{2} \mathrm{Cl}$ with $\mathrm{TiCl}_{4},{ }^{12}$ returned the hydrolysed and oxidized compound, such as 43 from 31 (Fig. 2). This was the same result as just adding HCl to 31 .
Further experimentation with indirect approaches to methylation was carried out with a simpler tricyclic model compound 44 (Scheme 6). Although there are not many examples of cyclopropanation of TBDMS-enol ethers in the literature, ${ }^{13}$ these

43
Fig. 2 Product from attempted methylation at C-6a.

Scheme 6 Model studies for the introduction of a methyl group at $\mathrm{C}-2 \mathrm{a}$ of the kempanes. Reagents and conditions: $i, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{Zn}$; ii, $\mathrm{LiAl}\left(\mathrm{OBu}^{\prime}\right)_{3} \mathrm{H}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$; iiii, $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}$; iv, with 47a, 1,3dithienium tetrafluoroborate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeNO}_{2},-78^{\circ} \mathrm{C} ; v, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP; vi, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; vii, NaH , MeI.
silyloxycyclopropanes can be converted to α-methyl ketones with base ${ }^{14}$ or acid. ${ }^{13}$ Treatment of 44 and a large excess of $\mathrm{CH}_{2} \mathrm{I}_{2}$ with $\mathrm{Et}_{2} \mathrm{Zn}$ gave the cyclopropanated compound 45 that had the desired stereochemistry at $\mathrm{C}-3 \mathrm{a}$ (from NOE experiments). Furthermore, monoreduction of 45 with a bulky hydride smoothly gave 46 with high chemo- and stereoselectivity. ${ }^{15}$ This result suggested that the construction of the sevenmembered ring via attack of a nucleophile onto the carbonyl at C-9a could be carried out selectively. It was then very disappointing when attempts to cyclopropanate the tetracyclic adduct 31 under similar conditions failed completely.

1,3-Dithienium tetrafluoroborate has been used to alkylate a trimethylsilyloxy alkene. ${ }^{16}$ We found that the TBDMS enol ether derived from cyclohexanone was also alkylated with 1,3dithienium tetrafluoroborate, in a yield of 88%. The reaction of this electrophile with 44 gave a complex mixture. In order to limit side-reactions, the carbonyl at C-6 of 44 was reduced Monoreduction of enediones such as 44 with NaBH_{4} in the presence of CeCl_{3} is known to be regioselective, but not facially selective. ${ }^{17}$ Thus, it was not surprising that the product was 47a,b, a $1: 1$ mixture of epimers. Introduction of an excess of 1,3-dithienium tetrafluoroborate to 47 a gave 48 in modest yield, but it is important to note that the alkylation took place exclusively on the desired face of the silyl enol ether, i.e., syn to the methyl at C-9a. Protection of the alcohol function of 47a as the acetate 49 led to a significant improvement in the yield of

Fig. 3 X-Ray crystal structure of compound 53
alkylated product 50. Methylation of 47b followed by reaction with 1,3-dithienium tetrafluoroborate gave $\mathbf{5 2}$ as a single isomer in 59% yield. The structure of $\mathbf{5 2}$ was confirmed by X-ray crystallography.

As shown in Scheme 7, addition of 1,3-dithienium tetrafluoro-

Scheme 7 Alkylation of tetracyclic Diels-Alder adducts with 1,3dithienium tetrafluoroborate. Reagents and conditions: i, 1,3-dithienium tetrafluoroborate. $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeNO}_{2},-78{ }^{\circ} \mathrm{C}$; ii, $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}$; iii, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP} ; i v, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH} ; v, \mathrm{NaBH} 4, \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$
borate to the adduct 33 gave no dithiane-containing product. Instead, the product was the pentacyclic compound 53, for which the structure was determined by X-ray analysis (Fig. 3). The same compound could be obtained by simply adding some HF to $\mathbf{3 3}$. Reduction of adduct $\mathbf{2 5}$ with $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}{ }^{17}$ gave the $1: 1$ epimeric mixture $\mathbf{5 4 a}, \mathbf{b}$, which was separated by chromatography. One isomer (54a) was acetylated (55) and treated with 1,3-dithienium tetrafluoroborate to give 56. None
of the compound with the opposite stereochemistry at C-6a was detected by NMR. Hydrolysis of the alkylated product could be carried out easily to give the alcohol 57. Reduction of $\mathbf{5 6}$ with sodium borohydride took place from the convex face with a high degree of selectivity to yield the hemiacetal 58.

Compound 43 had been produced in many unsuccessful methylation experiments. This compound was therefore convenient to use to study the reduction and equilibration process ($\mathbf{9} \rightarrow \mathbf{8}$ in Scheme 1) to establish the stereochemistry at C-2 and C-4a (Scheme 8). A similar process had proven to be very

43

59

60

42

61

Scheme 8 Reduction and equilibration study. Reagents and conditions: $i, \mathrm{Zn}, \mathrm{AcOH}, \Delta ; i i, \mathrm{TiCl}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{RT}$.
inefficient in Dauben's synthesis of $\mathbf{1}$ (Scheme 2). ${ }^{3}$ Reduction of both double-bonds in $\mathbf{4 3}$ took place with zinc in hot acetic acid. The lactone ring was unaffected under these conditions, and two isomeric products were detected by NMR. The relative amounts of these changed during prolonged heating such that the initial minor product equilibrated to the major one, which was shown to be compound 59. NOE data for this major product included a 9% enhancement of the signal for the hydrogen on C-10a and a 6% enhancement for the hydrogen on $\mathrm{C}-2$ on saturation of the signal for the hydrogen on C-4a. This showed that the decalin ring-junction was trans, but the C-2 methyl was also trans to the C-4a hydrogen. The structure of 59 was corroborated by X-ray analysis, which showed that, at least in the solid state, the diketone ring was in a twisted conformation in which the C-2 methyl was pseudo-equatorial (Fig. 4). This was not the desired isomer for the synthesis of the kempanes. Attention was turned to the initially major isomer. Both double-bonds of $\mathbf{4 3}$ could be reduced quickly with TiCl_{3} in water ${ }^{18}$ at room temperature to give mainly the product that was identical with the initial major product from the reduction with zinc and acetic acid. The NOE data for this isomer included enhancements of the signals for both the C-2 and the $\mathrm{C}-4 \mathrm{a}$ hydrogens on saturation of the $\mathrm{C}-10 \mathrm{c}$ methyl signal. Thus, the compound was $\mathbf{6 0}$. The configuration at $\mathrm{C}-2$ was the desired one, but the decalin ring-junction was cis. Treatment of $\mathbf{6 0}$ with hot acetic acid gave 59, but the desired isomer was never observed.

Fig. 4 X-Ray crystal structure for compound 59.
In a similar manner, 42 was reduced by zinc in hot acetic acid to give a very complex mixture in which 61, now a cyclic ether, was a major component.

Conclusions

While the route to the kempanes proposed in Scheme 1 contains elements that are feasible, some adjustments to the synthetic plan would be required. The key Diels-Alder reaction $(\mathbf{1 1} \longrightarrow$ 10) was a selective and efficient reaction. Also, indirect introduction of the kempanes' C-2a methyl group ($\mathbf{1 0} \rightarrow \mathbf{9}$) appeared to be possible through the reaction of the silyl enol ether with 1,3-dithienium tetrafluoroborate or via cyclopropanation, although the latter had failed with adduct 28 . The one attempt to cyclize the seven-membered ring $(7 \longrightarrow 6)$ early in the synthetic sequence had not been encouraging, although reduction of a ketone function in the cyclopropanated model 42 and in the modified adduct 53 showed that this ketone was sufficiently unhindered that cyclization of the seven-membered ring onto this ketone might still be reasonably anticipated. Finally, it was clear that establishing the correct stereochemistry at C-4a and C-7 of the kempanes by equilibration would not take place as originally planned. These conclusions were instrumental in the design of a route, described in the following paper, that was ultimately successful in preparing the challenging ring system of the kempanes.

Experimental

General

Uncorrected melting points were determined on a Fisher-Johns apparatus. Infrared spectra were measured on a Mattson Polaris FT instrument. A General Electric GE $300-$ NB spectrometer provided the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (300 MHz for ${ }^{1} \mathrm{H}$, 75 MHz for ${ }^{13} \mathrm{C}$). Unless otherwise noted, CDCl_{3} was the solvent. Shifts are relative to internal tetramethylsilane. Nuclear Overhauser effect (NOE) measurements were made using difference spectra. The NOE data have this form: saturated signal (enhanced signal, enhancement). ${ }^{13} \mathrm{C}$ NMR signals are followed in parentheses by the assignments (based on APT spectra and heterocorrelated spectra) or the number of attached hydrogens (e.g. $2=\mathrm{CH}_{2}$). Mass spectra (EI) were usually obtained on a V. G. Micromass 7070HS instrument. The X-ray diffractometer was a Rigaku AFC6S instrument. Unless otherwise noted, solutions were "dried" by stirring with anhydrous MgSO_{4} followed by filtration. "Chromatography" refers to flash column chromatography on silica gel; elution was generally with hexane containing an increasing proportion of ethyl acetate.

cis-8,8-Dichloro-3-methylbicyclo[4.2.0]oct-2-en-7-one 16

A mixture of 3-methylcyclohex-2-en-1-one ($22.5 \mathrm{~g}, 200 \mathrm{mmol}$), p-tolylsulfonylhydrazine ($38.4 \mathrm{~g}, 200 \mathrm{mmol}$) and 1.5 ml of concentrated HCl in THF (280 ml) was stirred at RT for 15 h . Three times, benzene (200 ml) was added to the red solution, and the mixture was concentrated under reduced pressure. The residue was solidified by trituration with diethyl ether and dried in a desiccator over CaCl_{2} under vacuum for 24 h . The p-tolylsulfonylhydrazone (57.8 g) was a $2: 1$ mixture of stereoisomers by ${ }^{1} \mathrm{H}$ NMR: δ_{H} (for the major isomer) $7.85(2 \mathrm{H}$, d, $J 8.2$), 7.31 ($2 \mathrm{H}, \mathrm{d}, J 8.2$), $5.94(1 \mathrm{H}, \mathrm{q}, J 1.4), 2.42(3 \mathrm{H}, \mathrm{s})$, $2.24(2 \mathrm{H}, \mathrm{t}, J 6.5), 2.05(2 \mathrm{H}, \mathrm{t}, J 6.0), 1.81(3 \mathrm{H}, \mathrm{d}, J 1.4)$ and $1.75(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{H}}$ (for the minor isomer) $7.86(2 \mathrm{H}, \mathrm{d}$, $J 8.5), 7.31(2 \mathrm{H}, \mathrm{t}, J 8.5), 6.13(1 \mathrm{H}, \mathrm{q}, J 1.4), 2.42(3 \mathrm{H}, \mathrm{s}), 2.32$ $(2 \mathrm{H}, \mathrm{t}, J 6.4), 2.15(2 \mathrm{H}, \mathrm{t}, J 6.1), 1.87(3 \mathrm{H}, \mathrm{d}, J 1.4)$ and 1.75 ($2 \mathrm{H}, \mathrm{m}$).

To a vigorously stirred suspension of the hydrazone mixture ($28.9 \mathrm{~g}, 100 \mathrm{mmol}$) in anhydrous diethyl ether (150 ml) was added methyllithium (1.4 M in diethyl ether, $157 \mathrm{ml}, 220 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ over 3 h . After stirring for an additional 15 h , water $(200 \mathrm{ml})$ was cautiously added. The organic layer was extracted with pentane ($3 \times 60 \mathrm{ml}$), and the pentane extracts were combined with the diethyl ether solution. The combined solutions were washed with 5% aqueous $\mathrm{HCl}(2 \times 60 \mathrm{ml})$, saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{ml})$ and brine (60 ml). This solution of $\mathbf{1 5}$ was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then over solid KOH .
Dry triethylamine ($26.8 \mathrm{ml}, 193 \mathrm{mmol}$) and dichloroacetyl chloride ($26.0 \mathrm{~g}, 175 \mathrm{mmol}$) in pentane were added at RT over 3 h . This was stirred for another 3.5 h . A precipitate was removed by filtration. The filtrate was washed with water (200 ml), saturated aqueous NaHCO_{3} solution ($3 \times 130 \mathrm{ml}$) and brine $(2 \times 130 \mathrm{ml})$. The organic solution was dried and concentrated under reduced pressure. Distillation ($75-91^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$) of the residue provided crude $\mathbf{1 6}(11.4 \mathrm{~g})$, which was used in the next step. An analytical sample was obtained by chromatography as a colourless oil: $v_{\max }($ film $) / \mathrm{cm}^{-1} 1804 ; \delta_{\mathrm{H}} 5.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $4.05(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.43(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.15(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ anti to 6-H), 1.99-1.92 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 1.77 ($3 \mathrm{H}, \mathrm{s}, 3$-methyl), 1.65 (1 H , m , $5-\mathrm{H} \operatorname{syn}$ to $6-\mathrm{H})$; NOE data 4.05 (3.43, $1.3 \% ; 2.15,0.8 \%$; $1.65,1.2 \%), 2.15(4.05,1.3 \% ; 1.65,6 \%)$ and $1.65(4.05,2 \% ; 2.15$, $6 \%) ; \delta_{\mathrm{C}} 197.0(\mathrm{C}-7), 140.4(\mathrm{C}-3), 117.1(\mathrm{C}-2), 87.1(\mathrm{C}-8), 52.4$ (C-6), 44.8 (C-1), 25.9 (C-4), 24.6 (3-methyl) and 19.4 (C-5); m/z $206\left(\mathrm{M}^{+}+2,3 \%\right), 204.0103\left(\mathrm{M}^{+}, 5, \mathrm{C}_{9} \mathrm{H}_{10}{ }^{35} \mathrm{Cl}_{2} \mathrm{O}\right.$ requires 204.0109), 105 (9), 94 (22), 91 (10), 79 (29), 77 (22) and 55 (100).

cis-3-Methylbicyclo[4.2.0]oct-2-en-7-one 17

To a vigorously stirred mixture of crude $\mathbf{1 6}(11.4 \mathrm{~g}$, approximately 55.4 mmol$)$ and $\mathrm{NH}_{4} \mathrm{Cl}(23.5 \mathrm{~g}, 44.7 \mathrm{mmol})$ in methanol $(300 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added zinc dust ($47.9 \mathrm{~g}, 730 \mathrm{mmol}$) in portions over 1 h . Stirring was continued at RT for 10 h . Diethyl ether (150 ml) was added and solid material was removed by filtration. The filtrate was concentrated under vacuum, and water (200 ml) was added to the residue. This was extracted with diethyl ether $(4 \times 50 \mathrm{ml})$. The combined organic extracts were washed with water $(40 \mathrm{ml})$ and brine $(40 \mathrm{ml})$, then dried and concentrated under vacuum. Distillation ($70-80{ }^{\circ} \mathrm{C} / 5$ mmHg) provided $\mathbf{1 7}$ as a colourless oil. This was sufficiently pure to be used in the next step, but an analytical sample was obtained by chromatography: $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1778 ; \delta_{\mathrm{H}} 5.63$ ($1 \mathrm{H}, \mathrm{q}, J 1.3,2-\mathrm{H}$), 3.49 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 3.24 (1 H , ddd, $J 16.8$, 9.2 and $2.8,8-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.54(1 \mathrm{H}$, ddd, $J 16.8,3.7$ and 2.6, 8-H), 2.05-1.94 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}), 1.80(1 \mathrm{H}, \mathrm{m}$, 4-H), $1.70(3 \mathrm{H}, \mathrm{s}, 3$-methyl) and $1.57(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$; NOE data $3.49(2.91,2.2 \%), 3.24(2.91,1.7 \% ; 2.54,5 \%)$ and 2.54 (3.49, 4\%); $\delta_{\mathrm{C}} 212.2$ (C-7), 135.8 (C-3), 122.6 (C-2), 56.3 (C-6), 52.3 (C-8), 26.2 (C-4), 24.4 (3-methyl), 23.4 (C-1) and 19.9 (C-5); $m / z 136.0892\left(\mathrm{M}^{+}, 0.3 \%, \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}\right.$ requires 136.0888), 94 (84), 93 (16), 91 (14), 79 (100), 77 (22) and 55 (22).

cis-3a,6,7,7a-Tetrahydro-5-methylbenzofuran-2(3H)-one 18

To a solution of crude $\mathbf{1 7}(4.34 \mathrm{~g}$, approximately 31.9 mmol$)$ in glacial acetic acid (30 ml) at $0{ }^{\circ} \mathrm{C}$ was added 30% hydrogen peroxide $(9.00 \mathrm{~g}, 79.4 \mathrm{mmol})$ over 10 min . The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 h before it was poured into water $(100 \mathrm{ml})$, and dichloromethane (100 ml) was added. Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was introduced until gas evolution ceased. The aqueous layer was re-extracted with dichloromethane ($3 \times 40 \mathrm{ml}$). The combined organic extracts were washed with saturated aqueous NaHCO_{3} solution (50 ml) and brine (50 ml). After drying over MgSO_{4}, the solution was concentrated under vacuum. Chromatography of the residue afforded $\mathbf{1 8}(4.05 \mathrm{~g}$, overall 27% from 3-methylcyclohex-2-en-1-one) as a colourless oil: $v_{\max }($ film $) / \mathrm{cm}^{-1}$ $1779 ; \delta_{\mathrm{H}} 5.15(1 \mathrm{H}$, broad s, $4-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 2.97$ ($1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$), $2.75(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 8.5 , $3-\mathrm{H}$ syn to $3 \mathrm{a}-\mathrm{H}$), $2.27(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and $2.9,3-\mathrm{H}$ anti to $3 \mathrm{a}-\mathrm{H}$), 2.18-2.07 (2 H , $\mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 1.90-1.71(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H})$ and 1.69 ($3 \mathrm{H}, \mathrm{s}$, 5 -methyl); NOE data 5.15 (2.97, 1.4\%; 2.27, 1.4\%), $4.72(2.97,1.6 \%)$ and $2.75(2.97,1.2 \% ; 2.27,7 \%) ; \delta_{\mathrm{C}} 177.1$ (C-2), 136.1 (C-5), 119.7 (C-4), 77.6 (C-7a), 36.3 (C-3), 34.8 (C-3a), 24.9 (2), 23.9 (2) and 23.7 (5-methyl); m/z 152.0845 $\left(\mathrm{M}^{+}, 24 \%, \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\right.$ requires 152.0837), 141 (11), 110 (27), 95 (29), 93 (100), 86 (51), 81 (26), 79 (22), 77 (21), 68 (31), 67 (29) and 60 (34).

cis-5-Acetyl-3,3a,6,6a-tetrahydrocyclopenta[b]furan-2(2H)-one 20

Ozone was introduced into a solution of $\mathbf{1 8}(12.0 \mathrm{~g}, 79.0 \mathrm{mmol})$ in dichloromethane (750 ml) at $-78{ }^{\circ} \mathrm{C}$ until a blue colour persisted. The excess ozone was removed by bubbling nitrogen through the solution until the blue colour disappeared. Dimethyl sulfide (45 ml) was added. The mixture was allowed to warm to RT as it was stirred overnight. The solvent and any remaining dimethyl sulfide were evaporated under vacuum. The residue (19) was immediately redissolved in THF (350 ml) and 5% aqueous $\mathrm{HCl}(350 \mathrm{ml})$ was added. The mixture was heated under reflux for 17 h . Most of the THF was evaporated under reduced pressure, and the remaining aqueous solution was extracted with ethyl acetate $(4 \times 50 \mathrm{ml})$. The combined organic extracts were washed with brine $(2 \times 50 \mathrm{ml})$, dried and concentrated under reduced pressure. Chromatography (silica gel, eluted with 3% methanol in chloroform) of the residue provided $20(5.60 \mathrm{~g}, 42 \%)$ as a white solid: $\mathrm{mp} 109-111^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution) $/ \mathrm{cm}^{-1} 1751,1662$ and $1617 ; \delta_{\mathrm{H}} 6.46(1 \mathrm{H}$, d, $J 1.3,4-\mathrm{H}), 5.18(1 \mathrm{H}$, apparent $\mathrm{t}, J 5.5,6 \mathrm{a}-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{m}$, $3 \mathrm{a}-\mathrm{H}), 3.02-2.91(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dd}, J 18.0$ and 10.2 , $3-\mathrm{H}$ syn to $3 \mathrm{a}-\mathrm{H}), 2.56(1 \mathrm{H}$, dd, $J 18.0$ and $2.0,3-\mathrm{H}$ anti to $3 \mathrm{a}-\mathrm{H})$ and $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{C}} 195.8\left(\mathrm{COCH}_{3}\right), 175.5$ (C-2), 143.9 (C-5), 141.0 (C-4), 82.3 (C-6a), 46.6 (C-3a), 37.8 (C-6), $32.4(\mathrm{C}-3)$ and $26.8\left(\mathrm{COCH}_{3}\right) ; m / z 166.0628\left(\mathrm{M}^{+}, 8 \%\right.$, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ requires 166.0629), 151 (25), 122 (11), 95 (20), 67 (29), 65 (10), 51 (11) and 43 (100).

(3 $\alpha, 3 \mathrm{a} \alpha, 7 \mathrm{a} \alpha$)-3a,6,7,7a-Tetrahydro-3,5-dimethylbenzofuran-2(3H)-one 21

$n-\operatorname{BuLi}(7.72 \mathrm{ml}$ of 2.5 M in hexane, 19.3 mmol) was added to a solution of diisopropylamine ($2.81 \mathrm{ml}, 21.2 \mathrm{mmol}$) in dry THF $(26 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ over 20 min . After stirring for 10 min , the solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathbf{1 8}(2.94 \mathrm{~g}, 19.3 \mathrm{mmol})$ in dry THF (26 ml) was introduced over 30 min . This was stirred for 30 min before iodomethane ($3.04 \mathrm{~g}, 21.3 \mathrm{mmol}$) in hexamethylphosphoramide $(4.16 \mathrm{~g}, 23.2 \mathrm{mmol})$ was added over 20 min , and this was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The solution was warmed to $0{ }^{\circ} \mathrm{C}$, and dilute aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 ml) was added at once followed by diethyl ether (300 ml). The organic layer was washed with water $(3 \times 80 \mathrm{ml})$ and brine $(80 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum. Chromatography provided $21(2.87 \mathrm{~g}, 89 \%)$ as a colourless oil:
$v_{\max }($ film $) / \mathrm{cm}^{-1} 1773 ; \delta_{\mathrm{H}} 5.32(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.67(1 \mathrm{H}$, ddd $J 10.8,6.8$ and $4.1,7 \mathrm{a}-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{dq}$, $J 7.5$ and $7.5,3-\mathrm{H}), 2.08-1.70(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $7-\mathrm{H}), 1.71(3 \mathrm{H}$, s, 5-methyl) and 1.31 ($3 \mathrm{H}, \mathrm{d}, J 7.5$, 3-methyl); NOE data 4.67 ($2.58,2 \%$) and $1.31(5.32,1 \% ; 2.58,3 \% ; 2.37,4 \%) ; \delta_{\mathrm{C}} 179.7$ (C-2), 136.0 (C-5), 119.4 (C-4), 75.9 (C-7a), 42.7 (C-3a), 41.7 (C-3), 26.1 (2), 25.6 (2), 23.5 (5-methyl) and 14.4 (3-methyl); m / z $166.0996\left(\mathrm{M}^{+}, 23 \%, \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right.$ requires 166.0994), 121 (9), 110 (17), 107 (28), 96 (14), 95 (17), 93 (81), 91 (20), 86 (17), 81 (17), 79 (29) and 74 (100).

(3 $\alpha, 3 a \alpha, 7 a \alpha)$-5-Acetyl-3,3a,6,6a-tetrahydro-3-methyl-2H-cyclo-penta[b]furan-2-one 23

Ozone was introduced into a solution of $21(3.05 \mathrm{~g}, 18.4 \mathrm{mmol})$ in dichloromethane (200 ml) at $-78^{\circ} \mathrm{C}$ until a blue colour persisted. Excess ozone was removed by bubbling nitrogen through the solution until the blue colour disappeared. Dimethyl sulfide ($15 \mathrm{ml}, 205 \mathrm{mmol}$) was added. The mixture attained RT while stirring overnight. Solvent and excess dimethyl sulfide were evaporated under reduced pressure to give a yellow oil (22), which was immediately redissolved in benzene $(350 \mathrm{ml})$. (\pm)-Camphorsulfonic acid ($0.43 \mathrm{~g}, 1.8 \mathrm{mmol}$) was added, and the mixture was heated under reflux in a DeanStark apparatus for 25 h . The cooled solution was washed with 5% aqueous NaHCO_{3} solution $(2 \times 100 \mathrm{ml})$ and brine $(2 \times 100$ $\mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography provided $23(1.59 \mathrm{~g}, 48 \%$ from 21) as a pale yellow oil: $v_{\max }($ film $) / \mathrm{cm}^{-1} 1769,1670$ and $1616 \mathrm{~m} ; \delta_{\mathrm{H}} 6.51(1 \mathrm{H}$, d, $J 1.7,4-\mathrm{H}), 5.20(1 \mathrm{H}$, apparent dt, $J 5.5$ and $1.6,6 \mathrm{a}-\mathrm{H}), 3.41$ ($1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.98-2.82(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{qd}, J 7.6$ and $1.9,3-\mathrm{H}), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$ and $1.42(3 \mathrm{H}, \mathrm{d}, J 7.6$, 3-methyl); NOE data 5.20 (3.41, 2\%; 2.98-2.82, 1.6\%), 3.41 ($6.51,1.6 \% ; 5.20,2 \% ; 1.42,1.3 \%$) and 1.42 ($5.20,1.6 \% ; 3.41$, $4 \%, 2.65,5 \%) ; \delta_{\mathrm{C}} 195.9\left(\mathrm{COCH}_{3}\right), 178.8(\mathrm{C}-2), 143.6(\mathrm{C}-5)$, 140.7 (C-4), 80.7 (C-6a), 54.7 (C-3a), 39.3 (C-3), 37.6 (C-6), 26.7 $\left(\mathrm{COCH}_{3}\right)$ and 17.4 (3-methyl); m/z $180.0781\left(\mathrm{M}^{+}, 19 \%\right.$, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}$ requires 180.0786), 165 (22), 136 (16), 121 (17), 109 (15) and 43 (100).

cis-5-[1-(1,1-Dimethylethyl)dimethylsilyloxyethenyl]-3,3a,6,6a-tetrahydro- $2 \boldsymbol{H}$-cyclopenta[b]furan-2-one 24

To a solution of $20(0.548 \mathrm{~g}, 3.30 \mathrm{mmol})$ and tert-butyldimethylsilyl triflate $\ddagger(0.83 \mathrm{ml}, 3.61 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine $(0.60 \mathrm{ml}, 4.30 \mathrm{mmol})$. After stirring the solution for 10 min , the solvent was evaporated under reduced pressure. Chromatography of the residue provided $24(0.682 \mathrm{~g}, 74 \%)$ as a colourless oil: $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 1778; $\delta_{\mathrm{H}} 5.77(1 \mathrm{H}$, broad s, $4-\mathrm{H})$, $5.16(1 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H})$, 4.36 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 4.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 3.61(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.83-$ $2.80(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.76(1 \mathrm{H}, \mathrm{dd}, J 18.0$ and $9.6,3-\mathrm{H} \operatorname{syn}$ to 3a-H), $2.46(1 \mathrm{H}, \mathrm{dd}, J 18.0$ and $1.5,3-\mathrm{H}$ anti to $3 \mathrm{a}-\mathrm{H}), 0.95$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; NOE data 5.16 (3.61, 3\%) and 2.76 (3.61, $2 \% ; 2.46,7 \%$); $\delta_{\mathrm{C}} 176.4$ (C-2), 152.4 (0), 140.2 (0), $127.3(\mathrm{C}-4), 94.8\left(\mathrm{CH}_{2}=\right), 83.4(\mathrm{C}-6 \mathrm{a}), 45.6(\mathrm{C}-3 \mathrm{a})$, $39.0(\mathrm{C}-6), 33.5(\mathrm{C}-3), 25.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $-4.7\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; m / z 280.1496\left(\mathrm{M}^{+}, 0.6 \%, \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}\right.$ requires 280.1495), 223 (11), 181 (10), 117 (12), 75 (100) and 73 (14).
> (4aa,7aß,10aß,10ba,10ca)-6-[(1,1-Dimethylethyl)dimethylsilyl-oxy]-4a,5,7,7a, 10,10a,10b,10c-octahydro-2,10c-dimethyl-1H-benz[6,7]indeno[2,1-b]furan-1,4,9-trione 25 and (4aa,7aß,10aß, 10ba,10c α)-6-[(1,1-dimethylethyl)dimethylsilyloxy]-4a,5,7,7a, 10,10a, 10b, 10c-octahydro-3,4a-dimethyl- 1 H -benz[6,7]indeno-[2,1-b]furan-1,4,9-trione 26

A solution of $\mathbf{2 4}(1.65 \mathrm{~g}, 5.89 \mathrm{mmol})$ and $\mathbf{1 2}(1.60 \mathrm{~g}, 11.8 \mathrm{mmol})$ in toluene (70 ml) was heated under reflux for 3 days. The

[^0]solvent was evaporated under reduced pressure, and chromatography of the residue gave $25(1.96 \mathrm{~g}, 80 \%)$ and $26(0.141 \mathrm{~g}$, 6%).

For 25: pale yellow foam, $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1776$ and 1681; $\delta_{\mathrm{H}} 6.44(1 \mathrm{H}, \mathrm{t}, J 1.5,3-\mathrm{H}), 5.06(1 \mathrm{H}$, apparent dt, J 6.5 and $2.5,7 \mathrm{a}-\mathrm{H})$, $3.61(1 \mathrm{H}$, ddd, $J 15.0,8.2$ and 2.5 , 10a-H), $2.94(1 \mathrm{H}$, broad t, $J 8.4,10 \mathrm{~b}-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 2.79(1 \mathrm{H}$, dd, $J 17.7$ and $8.4,10 \beta-\mathrm{H}), 2.60(1 \mathrm{H}$, broad d, $J 18.1,7 \alpha-\mathrm{H})$, $2.39(1 \mathrm{H}, \mathrm{m}, 5 \alpha-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and $2.0,10 \alpha-\mathrm{H})$, $2.28(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{m}, 5 \beta-\mathrm{H}), 1.97(3 \mathrm{H}, \mathrm{d}, J 1.4$, 2-methyl), $1.42\left(3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}\right.$-methyl), $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data 3.61 ($5.06,8 \% ; 2.79,3 \%$), $2.28(3.61,1 \% ; 2.94,8 \% ; 2.79,4 \%)$ and 1.42 (3.61, $5 \% ; 2.94,8 \% ; 2.37,8 \% ; 2.28,11 \%) ; \delta_{\mathrm{C}} 202.0$ (0), 199.4 (0), 176.6 (C-9), 148.2 (C-2), 139.5 (C-6), 133.8 (C-3), 117.4 (C-6a), 85.2 (C-7a), 56.7 (C-10b), 53.3 (C-4a), 50.8 (C-10c), 41.2 (C-10a), 36.9 (C-10), 34.4 (C-7), 31.5 (C-5), $25.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.4$ (10c-methyl), $18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.5$ (2-methyl), $-3.9\left(\mathrm{SiCH}_{3}\right)$ and $-4.0\left(\mathrm{SiCH}_{3}\right) ; m / z 416.1990\left(\mathrm{M}^{+}\right.$, $2 \%, \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}$ requires 416.2019), 360 (11), 359 (35), 224 (21), 223 (37), 195 (12), 181 (21), 117 (20), 103 (16), 75 (100) and 73 (85).

For 26: pale yellow foam, $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1775$ and 1684; $\delta_{\mathrm{H}} 6.49(1 \mathrm{H}, \mathrm{q}, J 1.3,2-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{td}, J 6.5$ and $1.9,7 \mathrm{a}-\mathrm{H})$, 3.77 ($1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}$), $3.03(1 \mathrm{H}, \mathrm{d}, J 5.3,10 \mathrm{c}-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{m}$, $7 \beta-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and $8.2,10 \beta-\mathrm{H}), 2.59(1 \mathrm{H}, \mathrm{m}$, $7 \alpha-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{~b}-\mathrm{H}), 2.36(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and 2.1 , $10 \alpha-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{dq}, J 17.2$ and $2.8,5 \beta-\mathrm{H}), 1.99(3 \mathrm{H}, \mathrm{d}, J 1.3$, 3-methyl), $1.78(1 \mathrm{H}, \mathrm{dq}, J 17.2$ and $2.5,5 \alpha-\mathrm{H}), 1.37(3 \mathrm{H}, \mathrm{s}$, 4a-methyl), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data $5.05(3.77,11 \% ; 2.98,6 \% ; 2.72$, 2%), 3.77 ($5.05,9 \% ; 3.03,1 \% ; 2.72,5 \%$), 2.52 (3.77, 2%; 3.03, $11 \% ; 1.37,2 \%)$ and $1.37(3.03,14 \% ; 2.52,14 \% ; 1.78,7 \%)$; $\delta_{\mathrm{C}} 202.9$ (0), 198.5 (0), 176.9 (C-9), 146.7 (C-3), 139.3 (C-6), 136.9 (C-2), 116.1 (C-6a), 85.2 (C-7a), 51.8 (C-10c), 50.6 (C-4a), 43.7 (C-10b), 40.9 (C-10a), 37.7 (C-5), 35.5 (C-10), 33.6 (C-7), $25.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.3$ (4a-methyl), $17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 16.4 (3-methyl), $-3.9\left(\mathrm{SiCH}_{3}\right)$ and $-4.0\left(\mathrm{SiCH}_{3}\right) ; ~ m / z 416.2036$ $\left(\mathrm{M}^{+}, 6 \%, \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}\right.$ requires 416.2019), 360 (30), 359 (96), 251 (70), 223 (21), 195 (15), 194 (20), 181 (17), 75 (98) and 73 (100).
(3a,3ad,6ad)-5-[1-(1,1-Dimethylethyl)dimethylsilyloxyethenyl]-3,3a,6,6a-tetrahydro-3-methyl- 2 H -cyclopenta $[b]$ furan-2-one 30 and ($3 \alpha, 3 a \beta, 6 a \beta$)-5-[1-(1,1-dimethylethyl)dimethylsilyloxy-ethenyl]-3,3a,6,6a-tetrahydro-3-methyl- 2 H -cyclopenta[b]furan-2-one 32
Method A. To a solution of diisopropylamine ($0.14 \mathrm{ml}, 1.00$ $\mathrm{mmol})$ in dry THF (4.0 ml) at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $0.40 \mathrm{ml}, 1.00 \mathrm{mmol}$) over 5 min . The solution was stirred for 20 min before it was transferred over 15 min by syringe to a solution of $23(0.180 \mathrm{~g}, 1.00 \mathrm{mmol})$ and tertbutyldimethylsilyl triflate ($0.28 \mathrm{ml}, 1.2 \mathrm{mmol}$) in dry THF (5.0 ml) at $-78^{\circ} \mathrm{C}$. This mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h before it was allowed to warm to RT. Hexane $(100 \mathrm{ml})$ was added. This solution was washed with water $(3 \times 30 \mathrm{ml})$ and brine (30 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Preparative thin-layer chromatography (silica gel, 0.5 mm thickness, 25% ethyl acetate in hexane) provided $30(214 \mathrm{mg}$, 73%) and a small amount of $32(37 \mathrm{mg}, 12 \%)$.

Method B. To a solution of diisopropylamine ($0.23 \mathrm{ml}, 1.75$ mmol) in dry THF (5.0 ml) at $0{ }^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $0.63 \mathrm{ml}, 1.57 \mathrm{mmol}$) over 5 min . The solution was stirred for 10 min then cooled to $-78^{\circ} \mathrm{C}$. A solution of 23 $(0.128 \mathrm{~g}, 0.710 \mathrm{mmol})$ in dry THF (1.0 ml) was added over 10 min . This mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Hexamethylphosphoramide (1.0 ml) was added followed by a solution of tert-butylchlorodimethylsilane ($243 \mathrm{mg}, 1.56 \mathrm{mmol}$) in dry THF (1.0 ml). The mixture was allowed to warm to RT, and
it was stirred for 2 h before it was diluted with pentane $(100 \mathrm{ml})$. This solution was washed with water $(2 \times 30 \mathrm{ml})$ and brine $(30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Preparative TLC (silica gel, 0.5 mm thickness, 25% ethyl acetate in hexane) provided $32(100 \mathrm{mg}, 48 \%)$ and a small amount of $\mathbf{3 0}(16 \mathrm{mg}, 8 \%)$.

For 30: colourless crystals, mp $75-76.5^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution) $/ \mathrm{cm}^{-1} 1772$ and $1590 ; \delta_{\mathrm{H}} 5.80(1 \mathrm{H}, \mathrm{d}, J 1.4,4-\mathrm{H})$, $5.19(1 \mathrm{H}$, apparent td, $J 5.5$ and $1.7,6 \mathrm{a}-\mathrm{H}), 4.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right)$, $4.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 3.25(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.88-2.73(2 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{qd}, J 7.6$ and $1.9,3-\mathrm{H}), 1.37(3 \mathrm{H}, \mathrm{d}, J 7.6$, 3-methyl), $0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; NOE data 5.19 (3.25, 7\%; 2.88-2.73, 3%), 3.25 (5.80 , $7 \% ; 5.19,8 \% ; 2.58,2 \%$) and $1.37(5.19,1.3 \% ; 3.25,10 \%$; $2.58,10 \%) ; \delta_{\mathrm{C}} 179.9$ (C-2), 152.4 (0), 140.0 (0), 127.1 (C-4), $94.8\left(\mathrm{CH}_{2}=\right), 81.7$ (C-6a), 53.8 (C-3a), 40.2 (C-3), 38.9 (C-6), $25.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.4$ (3-methyl), $-4.7\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; m / z 294.1646\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}\right.$ requires 294.1649), 279 (1), 238 (8), 237 (7), 209 (18), 181 (14), 130 (18), 117 (18), 75 (100) and 73 (18).
For 32: colourless oil, $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1772$ and 1590; $\delta_{\mathrm{H}} 5.86$ (1 H , broad s, $4-\mathrm{H}$), $5.06(1 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H}), 4.37\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right)$, $4.34\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 3.64(1 \mathrm{H}$, apparent broad $\mathrm{t}, J 6.8,3 \mathrm{a}-\mathrm{H})$, 2.89-2.75 ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and 6-H), 1.27 ($3 \mathrm{H}, \mathrm{d}, J 7.4,3$-methyl), $0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.16(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}); NOE data $5.06(3.64,4 \%), 3.64(5.06,4 \%)$ and 1.27 (5.86, 6\%); $\delta_{\mathrm{C}} 178.7$ (C-2), 152.5 (0), 141.1 (0), 123.7 (C-4), 94.8 ($\mathrm{CH}_{2}=$), 81.1 (C-6a), 50.6 (C-3a), 39.2 (C-6), 37.7 (C-3), 25.7 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.0$ (3-methyl), $-4.6\left(\mathrm{SiCH}_{3}\right)$ and $-4.8\left(\mathrm{SiCH}_{3}\right) ; \mathrm{m} / \mathrm{z} 294.1651\left(\mathrm{M}^{+}, 0.4 \%, \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}\right.$ requires 294.1649), 238 (5), 237 (5), 209 (10), 181 (12), 130 (17), 117 (15), 75 (100) and 73 (15).
(4ao,7aß,10ß,10aß,10ba,10c α)-6-[(1,1-Dimethylethyl)dimethyl-silyloxy]-4a,5,7,7a,10,10a,10b,10c-octahydro-2,10,10c-tri-methyl-1 H -benz[6,7]indeno[2,1-b]furan-1,4,9-trione 31
A solution of diene $\mathbf{3 0}(295 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathbf{1 2}(206 \mathrm{mg}$, 1.50 mmol) in dry toluene (10 ml) was heated under reflux for 3 days. The solvent was evaporated under reduced pressure. Signals attributable to only one adduct were detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue. Preparative TLC (silica gel, 0.5 mm thickness, 30% ethyl acetate in hexane) provided 31 ($347 \mathrm{mg}, 81 \%$): colourless crystals, $\mathrm{mp} 134-135{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right.$ solution) $/ \mathrm{cm}^{-1} 1774$ and $1682 ; \delta_{\mathrm{H}} 6.44(1 \mathrm{H}, \mathrm{q}, J 1.4,3-\mathrm{H}), 5.14$ $(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.14-3.00(2 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 2.94(1 \mathrm{H}$, $\mathrm{m}, 4 \mathrm{a}-\mathrm{H}), 2.45-2.34(3 \mathrm{H}, \mathrm{m}, 5 \beta-\mathrm{H}, 7 \alpha-\mathrm{H}$ and $10-\mathrm{H}), 2.32(1 \mathrm{H}$, m, 10b-H), 2.07 ($1 \mathrm{H}, \mathrm{m}, 5 \alpha-\mathrm{H}$), 1.97 ($3 \mathrm{H}, \mathrm{d}, J$ 1.4, 2-methyl), 1.41 ($3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}$-methyl), 1.31 ($3 \mathrm{H}, \mathrm{d}, J 7.3,10$-methyl), 0.89 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.05(3 \mathrm{H}, \mathrm{s}$, SiCH_{3}); NOE data 5.14 (3.14-3.00, 9\%), 2.94 (2.45-2.34, 8\%; $2.32,15 \% ; 1.41,1 \%)$, 2.32 (3.14-3.00, $5 \% ; 2.94,9 \% ; 2.07,5 \%$), 1.41 (6.44, 2\%; 3.14-3.00, 5\%; 2.94, 9\%; 2.45-2.34, 2\%; 2.32, 16%) and $1.31(3.14-3.00,4 \% ; 2.45-2.34,5 \%) ; \delta_{\mathrm{C}} 201.8(0)$, 199.6 (0), 179.5 (C-9), 148.1 (C-2), 139.6 (C-6), 133.8 (C-3), 116.8 (C-6a), 82.0 (C-7a), 56.5 (C-4a), 52.8 (C-10b), 51.0 (C-10c), 49.1 (C-10a), 43.1 (C-10), 34.6 (C-7), 31.6 (C-5), $25.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.8$ (10c-methyl), $18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.5$ (2-methyl), 15.2 (10-methyl), $-3.9\left(\mathrm{SiCH}_{3}\right)$ and $-4.1\left(\mathrm{SiCH}_{3}\right)$; $m / z 430.2157\left(\mathrm{M}^{+}, 10 \%, \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}\right.$ requires 430.2176), 415 (8), 373 (45), 238 (21), 237 (22), 209 (32), 181 (18), 131 (20), 130 (32), 117 (28), 75 (100) and 73 (81).

(4ac,7aß,10a,10aß,10ba,10c α)-6-[(1,1-Dimethylethyl)dimethyl-silyloxy]-4a,5,7,7a,10,10a,10b,10c-octahydro-2,10,10c-trimethyl-1 H -benz[6,7]indeno[2,1-b]furan-1,4,9-trione 33

A solution of diene $\mathbf{3 2}(123 \mathrm{mg}, 0.418 \mathrm{mmol})$ and $\mathbf{1 2}(85 \mathrm{mg}$, 0.63 mmol) in dry toluene (5.0 ml) was heated under reflux for 3 days. The solvent was evaporated under reduced pressure.

Signals attributable to only one adduct were detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue. Preparative TLC (silica gel, 0.5 mm thickness, 30% ethyl acetate in hexane) provided 33 $(147 \mathrm{mg}, 82 \%)$: colourless crystals, $\mathrm{mp} 131-133{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CCl}_{4}\right.$ solution) $/ \mathrm{cm}^{-1} 1770$ and $1682 ; \delta_{\mathrm{H}} 6.45(1 \mathrm{H}, \mathrm{q}, J 1.4,3-\mathrm{H})$, $5.08(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}), 2.98-2.83$ ($3 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H}, 7 \beta-\mathrm{H}$ and $10-\mathrm{H}$), 2.57-2.47 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $7 \alpha-\mathrm{H}), 2.41(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{~b}-\mathrm{H}), 2.03(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.95(3 \mathrm{H}$, d, $J 1.4,2$-methyl), 1.37 ($3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}-\mathrm{methyl}$), 1.25 ($3 \mathrm{H}, \mathrm{d}, J 7.6$, 10-methyl), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data 5.08 (3.70, $\left.5 \%\right)$, $2.41(2.98-$ 2.83, 8\%), 1.37 (3.70, $6 \% ; 2.98-2.83,8 \%)$ and 1.25 (2.98-2.83, $6 \% ; 2.41,7 \%) ; \delta_{\mathrm{C}} 202.2(0), 199.7$ (0), 179.4 (C-9), 147.9 (C-2), 140.0 (C-6), 133.9 (C-3), 119.4 (C-6a), 83.9 (C-7a), 57.1 (C-4a), 51.9 (C-10c), 46.7 (C-10b), 45.2 (C-10a), 38.6 (C-10), 35.5 (C-7), 31.7 (C-5), $25.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 25.5 (10c-methyl), $18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.5$ (2-methyl), 13.5 (10-methyl) and -4.0 $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; m / z 430.2177\left(\mathrm{M}^{+}, 10 \%, \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}\right.$ requires 430.2176), 374 (17), 373 (48), 238 (25), 237 (22), 209 (29), 181 (17), 131 (26), 130 (28), 117 (34), 91 (21), 75 (96) and 73 (100).

(3a,3ac,6aa)-5-[(1-Acetoxy)ethenyl]-3,3a,6,6a-tetrahydro-3-methyl- 2 H -cyclopenta[b]furan-2-one 34

A solution of $\mathbf{2 3}(180 \mathrm{mg}, 1.00 \mathrm{mmol})$ and (\pm)-camphorsulfonic acid ($20 \mathrm{mg}, 0.09 \mathrm{mmol}$) in isopropenyl acetate $(5.0 \mathrm{ml}$, 45 mmol) was heated under reflux for 4 days. The excess isopropenyl acetate was evaporated under reduced pressure. Preparative TLC (silica gel, 0.5 mm thickness, 60% ethyl acetate in hexane) provided $34(130 \mathrm{mg}, 58 \%)$ as a pale yellow oil: $v_{\max }($ film $) / \mathrm{cm}^{-1} 1765,1648$ and 1602; $\delta_{\mathrm{H}} 5.64(1 \mathrm{H}, \mathrm{d}, J 1.1$, $4-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{td}, J 5.9$ and $1.2,6 \mathrm{a}-\mathrm{H}), 5.00(1 \mathrm{H}, \mathrm{d}, J 2.0$, $\left.\mathrm{CH}_{2}=\right), 4.98\left(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{CH}_{2}=\right), 3.27(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.93$ $(1 \mathrm{H}, \mathrm{ddt}, J 17.3,5.9$ and $1.7,6-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 1.2 , $6-\mathrm{H}), 2.57(1 \mathrm{H}, \mathrm{qd}, J 7.6$ and $2.1,3-\mathrm{H}), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$ and 1.37 ($3 \mathrm{H}, \mathrm{d}, J 7.6$, 3-methyl); $\delta_{\mathrm{C}} 179.4$ (C-2), 168.7 $\left(\mathrm{COCH}_{3}\right), 149.0(0), 136.3(0), 127.7(\mathrm{C}-4), 105.5\left(\mathrm{CH}_{2}=\right), 81.1$ (C-6a), $54.0(\mathrm{C}-3 \mathrm{a}), 39.9(\mathrm{C}-3), 38.8(\mathrm{C}-6), 20.8\left(\mathrm{COCH}_{3}\right)$ and 17.3 (3-methyl).

(4a⿱,7aß,10ß,10aß,10bo,10c α)-6-Acetoxy-4a,5,7,7a,10,10a, 10b,10c-octahydro-2,10,10c-trimethyl-1 H-benz $[6,7]$ indeno $[2,1-$ b]furan-1,4,9-trione 35 and (4ac,7aß,10ק,10aß,10ba,10c α)-6-acetoxy-4a,5,7,7a,10,10a,10b,10c-octahydro-3,4a,10-trimethyl1 H -benz[6,7]indeno[2,1-b]furan-1,4,9-trione 36

A solution of $34(107 \mathrm{mg}, 0.481 \mathrm{mmol})$ and $\mathbf{1 2}(73 \mathrm{mg}$, $0.53 \mathrm{mmol})$ in dry toluene (5.0 ml) was heated under reflux. After 4 days another $110 \mathrm{mg}(0.808 \mathrm{mmol})$ of 2,6-dimethyl-1,4benzoquinone was added and the solution was heated under reflux for 8 days. The solvent was evaporated under reduced pressure. Preparative TLC (silica gel, 0.5 mm thickness, 60% ethyl acetate in hexane) gave a pale yellow foam ($83 \mathrm{mg}, 50 \%$) consisting of an inseparable $4: 1$ mixture of $\mathbf{3 5}$ and $\mathbf{3 6}$, respectively. The following NMR data were obtained from the adduct mixture.
For 35: $\delta_{\mathrm{H}} 6.45(1 \mathrm{H}$, apparent $\mathrm{t}, J 1.4,3-\mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-$ H), $3.18(1 \mathrm{H}, \mathrm{dd}, J 13.2$ and $5.8,10 \mathrm{a}-\mathrm{H})$, $3.02(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H})$, $2.90(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{m}), 2.51-2.39(3 \mathrm{H}, \mathrm{m}), 2.19$ $(1 \mathrm{H}, \mathrm{m}), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.99(3 \mathrm{H}, \mathrm{d}, J$ 1.4, 2-methyl), $1.44(3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}$-methyl) and $1.32(3 \mathrm{H}, \mathrm{d}, J 7.4,10$-methyl); NOE data 6.45 (1.99, 1\%), 5.19 (3.18, 5\%; 2.90, 3\%), 3.18 (5.19, $6 \%), 1.44(3.02,8 \%)$ and $1.32(3.18,7 \%) ; \delta_{\mathrm{C}} 201.4,198.8,179.1$, $168.4,148.1,137.4,133.8,127.1,81.8,55.9,52.8,51.1,48.9$, 43.2, 34.4, 28.7, 24.4, 20.6, 16.5 and 15.3.

Discernable signals for 36: $\delta_{\mathrm{H}} 6.63(1 \mathrm{H}, \mathrm{q}, J 1.4,2-\mathrm{H}), 4.94$ $(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.02(3 \mathrm{H}, \mathrm{d}, J 1.4$, 3-methyl), 1.40 ($3 \mathrm{H}, \mathrm{d}, J 7.7$, 10-methyl) and $1.25(3 \mathrm{H}, \mathrm{s}$, $10 \mathrm{c}-\mathrm{methyl}) ; \delta_{\mathrm{C}} 137.3,81.2,57.1,53.8,42.2,42.0,35.1,33.6$, 21.7, 20.7, 17.7 and 16.4.
(2 $\alpha, 3 \alpha, 3 \mathrm{a} \alpha, 6 \mathrm{a} \alpha)$ - and ($2 \alpha, 3 \beta, 3 \mathrm{a} \beta, 6 \mathrm{a} \beta$)-5-[1-(1,1-Dimethylethyl)-dimethylsilyloxyethenyl]-3,3a,6,6a-tetrahydro-2-hydroxy-2,3-dimethyl-2 \mathbf{H}-cyclopenta[b]furan 37
To a solution of $\mathbf{3 0}(458 \mathrm{mg}, 1.56 \mathrm{mmol})$ in anhydrous diethyl ether $(20 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ was added methyllithium $(1.28 \mathrm{ml}$ of a 1.4 M solution in diethyl ether, 1.79 mmol) over 6 min . The mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 2.5 h . Water (50 ml) was added, and the aqueous layer was extracted with diethyl ether ($3 \times 25 \mathrm{ml}$). The combined organic solutions were washed with brine $(2 \times 30 \mathrm{ml})$, dried and concentrated under reduced pressure. Chromatography afforded a white solid, $37(403 \mathrm{mg}$, 83%), as a $2.2: 1$ mixture of epimers: $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3404$ (broad) and 1588; for the major epimer: $\delta_{\mathrm{H}} 5.94(1 \mathrm{H}, \mathrm{d}, J 2.0$, $4-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H}), 4.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 4.28(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}=\right), 3.06(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.76-2.67(2 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{m})$, 1.44 ($3 \mathrm{H}, \mathrm{s}, 2$-methyl), 1.13 ($3 \mathrm{H}, \mathrm{d}, J 7.0$, 3-methyl), 0.97 (9 H , $\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; clearly discernable signals for the minor epimer: $\delta_{\mathrm{H}} 6.04(1 \mathrm{H}, \mathrm{d}$, $J 1.3,4-\mathrm{H}), 1.36$ (3 H, s, 2-methyl) and 1.04 ($3 \mathrm{H}, \mathrm{d}, J 7.2$, 3-methyl).
(4aa,7aß,10ß,10aß,10ba,10ca)-6-[(1,1-Dimethylethyl)dimethyl-silyloxy]-5,7,7a,9,10,10a,10b,10c-octahydro-9-hydroxy-2,9,10, 10c-tetramethyl-1 H-benz[6,7]indeno[2,1-b]furan-1,4(4aH)-dione 38and(4a $\alpha, 7 \mathrm{a} \beta, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha, 10 \mathrm{c} \alpha)$-6-[(1,1-dimethylethyl)dimethyl-silyloxy]-5,7,7a,10a,10b,10c-hexahydro-2,9,10,10c-tetramethyl1 H -benz[6,7]-indeno[2,1-b]furan-1,4(4aH)-dione 39
A solution of 37 ($2.2: 1$ epimeric mixture; $111 \mathrm{mg}, 0.357 \mathrm{mmol}$) and $12(97.2 \mathrm{mg}, 0.714 \mathrm{mmol})$ in toluene $(5.0 \mathrm{ml})$ was heated under reflux for 48 h . The solvent was evaporated under reduced pressure. Preparative TLC (silica gel, 0.5 mm thickness, 30% ethyl acetate in hexane) gave $38(50 \mathrm{mg}, 31 \%)$, as an $8: 1$ mixture of epimers at C-9, and 39 ($57 \mathrm{mg}, 37 \%$).

NMR data for 38: major epimer: $\delta_{\mathrm{H}} 6.38(1 \mathrm{H}$, narrow m, $3-\mathrm{H}), 4.89(1 \mathrm{H}$, apparent q, $J 7.7,7 \mathrm{a}-\mathrm{H}), 3.05-2.83(3 \mathrm{H}, \mathrm{m})$, $2.33(1 \mathrm{H}, \mathrm{m}), 2.18-2.01(2 \mathrm{H}, \mathrm{m}), 1.94(3 \mathrm{H}$, broad s, 2-methyl), $1.67(1 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.22(1 \mathrm{H}, \mathrm{m})$, 1.03 ($3 \mathrm{H}, \mathrm{d}, J 6.8,10$-methyl), $0.87(9 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s})$ and $0.02(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 201.5,200.4,148.4,138.0,133.3,119.7$, $108.0,81.3,56.9,51.4,49.8,36.3,31.7,26.0,25.6,25.2,18.0$, $16.5,12.4,-3.9$ and -4.2 ; clearly discernable signals for the minor epimer: $\delta_{\mathrm{H}} 6.49(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H})$, $0.97(3 \mathrm{H}, \mathrm{d}, J 7.5,10-\mathrm{H}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s})$ and 0.14 ($3 \mathrm{H}, \mathrm{s}$).

For 39: pale yellow solid, mp 128-129.5 ${ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1681 ; \delta_{\mathrm{H}} 6.38(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.06(1 \mathrm{H}$, apparent q, $J 7.5,7 \mathrm{a}-\mathrm{H})$, $3.68(1 \mathrm{H}, \mathrm{d}, J 8.3,10 \mathrm{a}-\mathrm{H}), 3.12(1 \mathrm{H}, \mathrm{dd}, J 15.3$ and $7.6,7 \beta-\mathrm{H})$, $2.94(1 \mathrm{H}$, apparent $\mathrm{t}, J 8.9,4 \mathrm{a}-\mathrm{H}), 2.41-2.32(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}), 2.19-2.00(2 \mathrm{H}, \mathrm{m}, 7 \alpha-\mathrm{H}$ and $5-\mathrm{H}), 1.95(3 \mathrm{H}, \mathrm{d}, J 1.3$, 2-methyl), 1.72 ($3 \mathrm{H}, \mathrm{s}, 9$-methyl), 1.56 ($3 \mathrm{H}, \mathrm{s}, 10$-methyl), 1.43 $\left(3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}\right.$-methyl), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right)$ and $0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data $5.06(3.68,7 \% ; 3.12$, 3%) and 1.43 ($3.68,8 \% ; 2.94,6 \% ; 2.41-2.32,4 \%$); $\delta_{\mathrm{C}} 201.9$ (0), 200.5 (0), 148.4 (0), 145.7 (0), 137.8 (0), 133.3 (1), 118.1 (0), 104.6 (0), 82.5 (1), 57.2 (1), 53.5 (1), 51.5 (0), 50.5 (1), 36.9 (2), 31.9 (2), 25.6 (3), 24.9 (3), 18.0 (0), 16.6 (3), 11.8 (3), 10.6 (3), -3.9 (3) and -4.2 (3); $m / z 428.2374\left(\mathrm{M}^{+}, 3 \%, \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\right.$ requires 428.2383), 332 (5), 291 (10), 275 (6), 247 (5), 179 (7), 109 (14), 75 (32) and 73 (100).

(6ad,7aß,10aß,10bo,10ca)-6a,7,7a,9,10,10a,10b,10c-Octahydro9 -hydroxy-2,9,10,10c-tetramethyl-1 H -benz $[6,7]$ indeno $[2,1-b]$ -furan-1,4,6-trione 42

A solution of 37 (2.2: 1 epimeric mixture; $845 \mathrm{mg}, 2.72 \mathrm{mmol}$) and $12(680 \mathrm{mg}, 5.00 \mathrm{mmol})$ in toluene $(40 \mathrm{ml})$ was heated under reflux for 70 h . The solvent was evaporated under reduced pressure, and the residue (38 and 39) was redissolved in THF (40 ml). To this was added 5% aqueous $\mathrm{HCl}(20 \mathrm{ml})$, and
the mixture was stirred at RT for 24 h . Ethyl acetate (160 ml) was added and the organic solution was washed with water $(3 \times 50 \mathrm{ml})$ and brine (50 ml). The solution was dried, concentrated under reduced pressure and subjected to chromatography, which provided $42(472 \mathrm{mg}, 52 \%$ from 37$)$ as a mixture composed mainly of two isomers (approximately $2: 1$). Selected NMR data for 42: major isomer: $\delta_{\mathrm{H}} 6.99(1 \mathrm{H}$, broad s$), 6.58$ $(1 \mathrm{H}, \mathrm{s}), 2.15(3 \mathrm{H}, \operatorname{broad} \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s})$ and 0.78 ($3 \mathrm{H}, \mathrm{d}, J 6.7$); $\delta_{\mathrm{C}} 200.3,197.6,185.5,151.1,149.7,139.3,138.6$, $127.7,109.5,83.0,81.8,52.6,52.5,51.2,48.8,35.9,30.6,25.7$, 17.1 and 13.8; minor isomer: $\delta_{\mathrm{H}} 6.98(1 \mathrm{H}$, broad s), $6.55(1 \mathrm{H}, \mathrm{s})$, $2.15(3 \mathrm{H}$, broad s), $1.60(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s})$ and $0.72(3 \mathrm{H}, \mathrm{d}$, $J 7.2$); δ_{C} 201.4, 197.3 and 186.0.

(6ao,7aß,10ß,10aß,10ba,10ca)-6a,7,7a,10a,10b,10c-Hexahydro-2,10,10c-trimethyl- $1 H$-benz[6,7]indeno[2,1-b]furan-1,4,6, $9(6 \mathrm{aH})$-tetraone 43

To a solution of $41(335 \mathrm{mg}, 0.778 \mathrm{mmol})$ in THF (16 ml) was added 8 ml of 10% aqueous HCl . After stirring at RT for 24 h , ethyl acetate (80 ml) was added. The organic layer was washed with water $(3 \times 25 \mathrm{ml})$ and brine $(25 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue afforded 43 ($150 \mathrm{mg}, 61 \%$) as yellow crystals: $\mathrm{mp} 180-$ $182{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{cm}^{-1} 1767,1667\right.$ and 1624; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.00(1 \mathrm{H}, \mathrm{q}, J 1.4), 6.61(1 \mathrm{H}, \mathrm{s}), 4.72(1 \mathrm{H}$, apparent q, $J 9.2)$, 3.19-2.99 ($3 \mathrm{H}, \mathrm{m}$), $2.82(1 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}, \mathrm{d}, J 1.4), 2.05(1 \mathrm{H}$, $\mathrm{m}), 1.86(1 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{s})$ and $1.12(3 \mathrm{H}, \mathrm{d}, J 7.5)$; $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 7.10(1 \mathrm{H}, \mathrm{q}, J 1.4,3-\mathrm{H}), 6.40(1 \mathrm{H}, \mathrm{s}$, $5-\mathrm{H}), 4.72(1 \mathrm{H}$, apparent q, $J 8.2,7 \mathrm{a}-\mathrm{H}), 3.34(1 \mathrm{H}$, apparent $\mathrm{t}, J 6.7,6 \mathrm{a}-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $6.1,10 \mathrm{~b}-\mathrm{H}), 2.84(1 \mathrm{H}$, $\mathrm{m}, 7 \beta-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dq}, J 7.5$ and $4.8,10-\mathrm{H}), 2.33(1 \mathrm{H}$, apparent td, $J 9.1$ and $4.7,10 \mathrm{a}-\mathrm{H}), 2.15$ ($3 \mathrm{H}, \mathrm{d}, J 1.4$, 2-methyl), 1.91 ($1 \mathrm{H}, \mathrm{m}, 7 \alpha-\mathrm{H}$), 1.70 ($3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}$-methyl) and 1.07 ($3 \mathrm{H}, \mathrm{d}, J 7.5$, 10 -methyl); NOE data $\left(\mathrm{CD}_{3}-\right.$ COCD_{3}): $4.72(2.84,1.6 \% ; 2.33,7 \%), 3.23(2.75,12 \% ; 1.91$, $2 \% ; 1.70,1 \%$), 1.91 ($4.72,2 \% ; 3.34,4 \% ; 3.23,2 \% ; 2.84$, $6 \%), 1.70(7.10,1.2 \% ; 6.40,2 \% ; 3.34,10 \% ; 3.23,9 \%)$ and $1.07(2.33,6 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 198.4,197.3,185.1,179.7,150.7$, 149.7, 139.0, 127.4, 80.9, 52.8, 50.6, 48.6, 47.9, 41.6, 36.5, 30.4, 18.0 and 17.1; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 199.6$ (0), 198.9 (0), 186.3 (0), 180.3 (C-9), 152.1 (0), 150.5 (0), 139.9 (C-3), 127.6 (C-5), 81.8 (C-7a), 53.6 (C-10b), 51.5 (C-10c), 48.8 (C-6a), 48.8 (C-10a), 42.5 (C-10), 36.9 (C-7), 30.5 ($10 \mathrm{c}-$ methyl), 17.9 (10 -methyl) and 17.1 (2-methyl); m/z 314.1162 $\left(\mathrm{M}^{+}, 45 \%, \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}\right.$ requires 314.1154), 296 (16), 286 (22), 268 (22), 253 (15), 241 (28), 217 (21), 213 (24), 188 (22), 176 (100), 148 (42), 120 (23), 96 (18), 94 (45), 91 (53), 79 (42) and 77 (34).
(5ad,9ad,9b $)-4-[(1,1-$ Dimethylethyl)dimethylsilyloxy]-2,3,5,5a, 9a,9b-hexahydro-8,9a-dimethyl- \mathbf{H}-benz[$[e$ indene-6,9-dione 44
A solution of 1-\{[(1,1-dimethylethyl)dimethylsilyloxy]ethenyl\}cyclopentene $\S(3.64 \mathrm{~g}, 16.2 \mathrm{mmol})$ and $\mathbf{1 2}(4.46 \mathrm{~g}, 32.4 \mathrm{mmol})$ in toluene (200 ml) was heated under reflux for 3 days. The solvent was evaporated under reduced pressure. Chromatography of the residue gave $44(4.86 \mathrm{~g}, 83 \%)$ as a viscous oil: $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 1683 and $1624 ; \delta_{\mathrm{H}} 6.41(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{t}, J 8.0,5 \mathrm{a}-\mathrm{H})$, 2.42-2.10 ($5 \mathrm{H}, \mathrm{m}$), 1.95 ($3 \mathrm{H}, \mathrm{d}, J 0.8,8$-methyl), $1.39(3 \mathrm{H}, \mathrm{s}$, 9a-methyl), $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data: 1.39 (2.87, 4\%); $\delta_{\mathrm{C}} 202.4$ (0), 200.5 (0), 148.7 (0), 137.3 (0), 133.5 (C-7), 120.8 (0), 57.1 (C-5a), 50.4 (C-9a), 49.4 (C-9b), 31.8 (2), 28.0 (2), 27.8 (2), 25.6 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.8$ (9a-methyl), 24.5 (2), $17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.5$ (8-methyl) and -4.1 ($\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \mathrm{m} / \mathrm{z} 360.2134\left(\mathrm{M}^{+}, 2 \%\right.$, $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$ requires 360.2119), 345 (1), 303 (3), 244 (2), 211 (3), 168 (8), 167 (7) and 75 (100).
§ The diene was produced by treatment of 1-acetylcyclopentene with TBDMS-OTF and $\mathrm{Et}_{3} \mathrm{~N}$.
[(3a $\alpha, 4 \beta, 5 \mathrm{a} \alpha, 9 \mathrm{a} \alpha, 9 \mathrm{~b} \alpha)$-4-[(1,1-Dimethylethyl)dimethylsilyloxy]-2,3,3a,4,5,5a,9a,9b-octahydro-3a,4-methano-8,9a-dimethyl-1 H benz $[e]$ indene- 6,9 -dione 45

To a solution of $\mathbf{4 4}(117 \mathrm{mg}, 0.325 \mathrm{mmol})$ in dry toluene (5 ml) was added diethylzinc (1.95 ml of a 1.0 M solution in hexane, 1.95 mmol), and diiodomethane ($0.32 \mathrm{ml}, 3.9 \mathrm{mmol}$) at RT. The mixture was stirred at RT for 2 h . The mixture was poured into an aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 ml). This was extracted with diethyl ether $(4 \times 30 \mathrm{ml})$. The combined extracts were washed with water (20 ml), brine (20 ml), dried and concentrated under reduced pressure. Chromatography of the residue provided $45(68 \mathrm{mg}, 56 \%)$ as an oil: $v_{\max }($ film $) / \mathrm{cm}^{-1} 1726$, 1697 and 1622; $\delta_{\mathrm{H}} 6.30(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.38-2.13(4 \mathrm{H}, \mathrm{m}), 1.97$ $(3 \mathrm{H}, \mathrm{d}, J 1.6,8$-methyl), $1.94(1 \mathrm{H}, \mathrm{m}), 1.83(1 \mathrm{H}, \mathrm{dd}, J 12.6$ and $1.7), 1.77(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and 1.2$), 1.64(1 \mathrm{H}, \mathrm{m}), 1.41(2 \mathrm{H}, \mathrm{m})$, $1.24\left(3 \mathrm{H}, \mathrm{s}, 9\right.$ a-methyl), $0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.71(1 \mathrm{H}, \mathrm{d}$, $J 5.3$, cyclopropyl), $0.36(1 \mathrm{H}, \mathrm{d}, J 5.3$, cyclopropyl), $0.010(3 \mathrm{H}$, s, SiCH_{3}) and $0.009\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data: $1.24(0.36$, $5 \%) ; \delta_{\mathrm{C}} 202.7$ (0), 201.1 (0), 150.6 (C-8), 132.4 (C-7), 58.2 (C-4), 57.4 (1), 53.0 (1), 50.2 (0), 34.8 (2), 33.3 (2), 31.0 (0), 28.3 (2), 27.7 (C-1), 26.0 (2), $25.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.7$ (9a-methyl), 17.7 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.6$ (8-methyl), $-3.2\left(\mathrm{SiCH}_{3}\right)$ and $-4.0\left(\mathrm{SiCH}_{3}\right)$; $m / z 374.2273\left(\mathrm{M}^{+}, 2 \%, \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}\right.$ requires 374.2275), 317 (7), 181 (33), 149 (18), 75 (71) and 73 (100).

(3ac,4阝,5a $, 9 \beta, 9 a \alpha, 9 b \alpha)-4-[(1,1-D i m e t h y l e t h y l) d i m e t h y l s i l y l-$ oxy]-1,2,3,3a,4,5,5a,9,9a,9b-decahydro-9-hydroxy-3a,4-methano-8,9a-dimethyl-6 \mathbf{H}-benz[e]inden-6-one 46

$\mathrm{LiAl}\left(\mathrm{OBu}^{\prime}\right)_{3} \mathrm{H}(0.22 \mathrm{ml}$ of a 1.0 M solution in THF, 0.22 mmol$)$ was added to a solution of $\mathbf{4 5}(68 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry THF $(5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$, and this solution was stirred at $0{ }^{\circ} \mathrm{C}$ for another 2 h . Water (2 ml) was added slowly followed by ethyl acetate $(100 \mathrm{ml})$ and brine $(20 \mathrm{ml})$. The organic layer was dried and concentrated under reduced pressure. Chromatography of the residue gave $\mathbf{4 6}(45.5 \mathrm{mg}, 67 \%)$ as a white solid: $\mathrm{mp} 144-146^{\circ} \mathrm{C}$; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1712$ and $1658 ; \delta_{\mathrm{H}} 5.77(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 3.82$ $(1 \mathrm{H}, \mathrm{d}, J 8.8,9-\mathrm{H}), 2.33(1 \mathrm{H}, \mathrm{dd}, J 13.3$ and 5.6$), 2.09(3 \mathrm{H}, \mathrm{d}$, $J 1.2,8$-methyl), 2.06-1.58 (m), 1.41 (1 H , dd, $J 12.4$ and 5.9), $1.11(2 \mathrm{H}, \mathrm{m}), 0.87$ ($3 \mathrm{H}, \mathrm{s}$, 9a-methyl), $0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.82(1 \mathrm{H}, \mathrm{d}, J 5.5$, cyclopropyl), $0.46(1 \mathrm{H}, \mathrm{d}, J 5.5$, cyclopropyl), $0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}} 202.4$ (C-6), 157.4 (C-8), 123.3 (C-7), 73.8 (C-9), 58.3 (C-4), 52.6 (1), 52.2 (1), 37.8 (C-9a), 35.4 (2), 34.0 (2), 30.8 (C-9b), 27.9 (cyclopropyl), 27.5 (2), 26.3 (9a-methyl), 26.0 (2), $25.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 22.1 (8-methyl), $17.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.2\left(\mathrm{SiCH}_{3}\right)$ and -4.0 $\left(\mathrm{SiCH}_{3}\right) ; m / z 376.2431\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}\right.$ requires 376.2434), 319 (4), 301 (4), 277 (3), 181 (15), 75 (67), 73 (100) and 41 (22).
(5ac,6p,9ao,9ba)-4-[(1,1-Dimethylethyl)dimethylsilyloxy]$\mathbf{1 , 2 , 3 , 5 , 5 a}, 6,9 \mathrm{a}, 9 \mathrm{~b}-o c t a h y d r o-6$-hydroxy-8,9a-dimethyl-9Hbenz[e]inden-9-one 47a and (5ac, $6 \alpha, 9 \mathrm{a} \alpha, 9 \mathrm{~b} \alpha$)-4-[(1,1-dimethyl-ethyl)dimethylsilyloxy]-1,2,3,5,5a,6,9a,9b-octahydro-6-hydroxy-8,9a-dimethyl-9 H -benz[e]inden-9-one 47b
To a solution of $\mathbf{4 4}(360 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(373$ $\mathrm{mg}, 1.00 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added NaBH_{4} $(26.6 \mathrm{mg}, 0.70 \mathrm{mmol})$ over 5 min . The mixture was stirred for 2 min before 40 ml of a dilute aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. This was extracted with ethyl acetate $(4 \times 25 \mathrm{ml})$. The combined extracts were washed with water ($2 \times 25 \mathrm{ml}$) and brine (25 ml), dried and concentrated under reduced pressure. Chromatography of the residue gave $47 \mathbf{a}$ and $\mathbf{4 7 b}$ ($347 \mathrm{mg}, 96 \%$) as a $1: 1$ mixture. These epimers were ultimately separated by repeated chromatography.

For 47a: colourless viscous oil; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3421$ (broad) and 1713; $\delta_{\mathrm{H}} 6.34(1 \mathrm{H}, \mathrm{d}, J 1.2,7-\mathrm{H}), 4.93(1 \mathrm{H}, \mathrm{m}$, 6-H), 2.53-2.43 (m), 2.33-2.19 (m), 1.91-1.78 (m), $1.74(3 \mathrm{H}, \mathrm{s}$, 8-methyl), $1.43(1 \mathrm{H}, \mathrm{m}), 1.28(3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}$-methyl), $0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \mathrm{NOE}$
data: 4.93 ($6.34,4 \% ; 1.28,7 \%$); $\delta_{\mathrm{C}} 202.7$ (C-9), 144.1 (C-7), 138.1 (0), 134.2 (0), 121.4 (0), 67.9 (C-6), 50.9 (1), 50.2 (1), 47.9 (C-9a), 28.9 (2), 28.0 (2), $25.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.0$ (2), 22.0 (9b-methyl), $18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 15.9$ (2-methyl), $-4.0\left(\mathrm{SiCH}_{3}\right)$ and -4.1 (SiCH_{3}); $m / z 317\left(\mathrm{M}^{+}-45,2 \%\right), 262$ (4), 244 (8), 229 (6), 175 (11), 149 (100), 147 (26), 121 (30), 98 (68), 91 (23), 75 (27), 55 (28) and 43 (34).

For 47b: pale yellow viscous oil; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3393$ (broad) and 1712; $\delta_{\mathrm{H}} 6.51(1 \mathrm{H}, \mathrm{d}, J 2.1,7-\mathrm{H}), 4.32(1 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}), 2.46-2.23(\mathrm{~m}), 2.16-1.98(\mathrm{~m}), 1.79(3 \mathrm{H}, \mathrm{d}, J 0.9$, 8-methyl), 1.66 ($1 \mathrm{H}, \mathrm{dd}, J 9.2$ and 3.5), 1.55-1.41 (m), 1.34 ($3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}$-methyl), $1.24(1 \mathrm{H}, \mathrm{m}), 0.93\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \delta_{\mathrm{C}} 202.7(\mathrm{C}-9)$, 144.7 (C-7), 137.7 (0), 135.2 (0), 121.1 (0), 66.7 (C-6), 49.5 (1), 49.0 (1), 45.3 (C-9a), 30.2 (2), 29.9 (2), $25.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 25.2 (9a-methyl), 25.1 (2), 22.5 (2), $18.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.1$ (8 -methyl), $-4.0\left(\mathrm{SiCH}_{3}\right)$ and $-4.2\left(\mathrm{SiCH}_{3}\right) ; m / z 362\left(\mathrm{M}^{+}, 1 \%\right)$, 317 (2), 264 (16), 149 (10), 138 (14), 98 (13), 75 (100) and 73 (23).

(3ac,5ac,6ß,9ad,9ba)-3a-(1,3-Dithian-2-yl)-1,2,3,3a,4,5,5a,6, $9 \mathrm{a}, 9 \mathrm{~b}$-decahydro-6-hydroxy-8,9a-dimethyl-9H-benz[e]indene-4,9-dione 48

To a solution of $47 \mathrm{a}(101 \mathrm{mg}, 0.279 \mathrm{mmol})$ in dry dichloromethane (3.0 ml) at $-78^{\circ} \mathrm{C}$ under argon was added over 5 min a solution of 1,3 -dithienium tetrafluoroborate $(172 \mathrm{mg}, 0.836$ $\mathrm{mmol})$ in dry nitromethane $(1.0 \mathrm{ml})$. After the solution was stirred for another 20 min at $-78^{\circ} \mathrm{C}$, it was allowed to warm to RT. The mixture was poured into saturated aqueous NaHCO_{3} solution (10 ml), and this was extracted with ethyl acetate $(3 \times 20 \mathrm{ml})$. The combined organic extracts were washed with brine (20 ml) and dried. The solution was concentrated under reduced pressure, and chromatography of the residue provided $48(34 \mathrm{mg}, 40 \%)$ as a white solid: $\mathrm{mp} 171-172{ }^{\circ} \mathrm{C}$; $v_{\text {max }}($ (Nujol $) /$ $\mathrm{cm}^{-1} 3407$ (broad) and 1712; $\delta_{\mathrm{H}} 6.34(1 \mathrm{H}, \mathrm{d}, J 1.5,7-\mathrm{H}), 4.86$ (1 H , apparent $\mathrm{t}, J 2.2,6-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of dithiane), $2.91-2.77(\mathrm{~m}), 2.66(1 \mathrm{H}$, dd, $J 9.0$ and 5.7$), 2.29(1 \mathrm{H}$, dd, $J 17.8$ and 9.2), 2.14-2.05 (m), 1.97-1.79 (m), $1.75(3 \mathrm{H}$, $\mathrm{s}, 8$-methyl), 1.68 (m) and 1.40 ($3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}$-methyl); $\delta_{\mathrm{C}} 211.6$ (C-4), 201.8 (C-9), 140.6 (C-7), 136.1 (C-8), 67.1 (C-6), 63.5 (C-3a), 58.1 (C-2 of dithiane), 53.0 (1), 48.5 (C-9a), 47.6 (1), 36.9 (2), 33.5 (2), 31.8 (2), 31.6 (2), 28.7 (2), 25.7 (2), 24.2 (2), 23.4 (9a-methyl) and 15.9 (8-methyl); $m / z 366.1330\left(\mathrm{M}^{+}, 6 \%\right.$, $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires 366.1322), 349 (7), 348 (21), 228 (17) and 119 (100).

(5aa,6ß,9ac,9ba)-6-Acetoxy-4-[(1,1-dimethylethyl)dimethyl-silyloxy]-1,2,3,5,5a,6,9a,9b-octahydro-8,9a-dimethyl-9Hbenz $[e]$ inden- 9 -one 49

To a solution of 47 a ($544 \mathrm{mg}, 1.50 \mathrm{mmol}$) in dry dichloromethane at RT was added acetyl chloride ($0.71 \mathrm{ml}, 7.5 \mathrm{mmol}$), triethylamine ($1.05 \mathrm{ml}, 7.50 \mathrm{mmol}$) and 4 -(dimethylamino)pyridine (DMAP) ($36.7 \mathrm{mg}, 0.30 \mathrm{mmol}$). This solution was stirred at RT for 24 h . The mixture was diluted with dichloromethane $(100 \mathrm{ml})$ before it was washed with brine $(2 \times 20 \mathrm{ml})$, dried and concentrated under reduced pressure. Chromatography of the residue provided $49(478 \mathrm{mg}, 74 \%)$ as a yellow oil; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1736$ and $1674 ; \delta_{\mathrm{H}} 6.44(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 5.92$ (1 H , apparent t, $J 2.5,6-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{m}), 2.73$ $(1 \mathrm{H}, \mathrm{m}), 2.57-2.53(2 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{dd}, J 17.3$ and 12.9$)$, $2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 2.08(\mathrm{~m}), 1.94(1 \mathrm{H}, \mathrm{m}), 1.84(3 \mathrm{H}$, 8-methyl), $1.67(1 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, 9 \mathrm{a}$-methyl), $0.92(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.1\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta_{\mathrm{C}} 198.5(\mathrm{C}-9), 170.1$ $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 139.6(\mathrm{C}-7), 138.0(0), 137.4(0), 136.8(0), 68.2(\mathrm{C}-8)$, 49.1 (C-9a), 46.5 (1), 36.0 (2), 35.7 (2), 29.3 (2), 25.7 (SiC$\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$, 21.7 (2), 21.4 (9a-methyl), $21.0\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 18.1$ ($\mathrm{SiC}-$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 15.9$ (8-methyl) and $-3.6\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; ~ m / z 404.2372$ $\left(\mathrm{M}^{+}, 2 \%, \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\right.$ requires 404.2381), 303 (6), 285 (5), 191 (9), 149 (100), 147 (21), 121 (21), 98 (79), 75 (32) and 43 (85).
(3ad,5ad,6ß,9ac,9ba)-6-Acetoxy-3a-(1,3-dithian-2-yl)-1,2,3,3a, 4,5,5a,6,9a,9b-decahydro-8,9a-dimethyl-9H-benz[e]indene-4,9dione 50

To a solution of $49(415 \mathrm{mg}, 1.10 \mathrm{mmol})$ in dry dichloromethane (10 ml) at $-78^{\circ} \mathrm{C}$ under argon was added over 5 min a solution of 1,3 -dithienium tetrafluoroborate $(600 \mathrm{mg}, 2.91$ $\mathrm{mmol})$ in dry nitromethane (2.0 ml). After the solution was stirred for another 20 min at $-78^{\circ} \mathrm{C}$, it was allowed to warm to RT. The mixture was poured into saturated aqueous NaHCO_{3} solution (20 ml), and this was extracted with ethyl acetate $(3 \times 40 \mathrm{ml})$. The combined organic extracts were washed with brine (20 ml) and dried. The solution was concentrated under reduced pressure, and chromatography of the residue provided $50(233 \mathrm{mg}, 52 \%)$ as a yellow oil: $\delta_{\mathrm{H}} 6.26(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 5.83(1 \mathrm{H}$, apparent $\mathrm{t}, J 2.4,6-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of dithiane), $2.99(1 \mathrm{H}$, m), 2.92-2.82 ($2 \mathrm{H}, \mathrm{m}$), $2.71(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 8.0$)$, $2.66(1 \mathrm{H}$, dd, $J 5.9$ and 3.6$), 2.32(1 \mathrm{H}, \mathrm{dd}, J 18.8$ and 10.1$), 2.26(1 \mathrm{H}, \mathrm{m})$, 2.17-2.08 ($4 \mathrm{H}, \mathrm{m}$), $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 1.95-1.79(3 \mathrm{H}, \mathrm{m})$, $1.76(3 \mathrm{H}, \mathrm{s}, 8$-methyl), $1.66(1 \mathrm{H}, \mathrm{s})$ and 1.46 ($3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}$-methyl); NOE data: 4.30 ($2.99,3 \%$; 2.71 and $2.66,12 \%$), 1.46 ($5.83,12 \%$; $4.30,2 \% ; 2.99,3 \% ; 2.71$ and $2.66,17 \%) ; \delta_{\mathrm{C}} 210.5$ (C-4), 201.2 (C-9), $170.2\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 137.4(\mathrm{C}-8), 136.5(\mathrm{C}-7), 69.4$ (C-6), 63.3 (C-3a), 57.8 (C-2 of dithiane), 52.6 (1), 48.5 (C-9a), 44.8 (1), 37.2 (2), 33.4 (2), 31.7 (2), 31.5 (2), 28.6 (2), 25.6 (2), 24.1 (2), 23.4 (9a-methyl), $20.9\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and 15.9 (8-methyl).

Hydrolysis of 50 to 48

To a solution of $\mathbf{5 0}(197 \mathrm{mg}, 0.480 \mathrm{mmol})$ in methanol (10 ml) at RT was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(335 \mathrm{mg}, 2.40 \mathrm{mmol})$ in water (2 ml). The mixture was stirred at RT for 2 h . A 1% aqueous HCl solution (5 ml) was added to the mixture, and this was extracted ethyl acetate $(3 \times 20 \mathrm{ml})$. The combined extracts were washed with brine (20 ml) and dried. The solution was concentrated under reduced pressure, and chromatography of the residue afforded 48 (89%).

(5ac,6a,9ad,9b $)$-4-[(1,1-Dimethylethyl)dimethylsilyloxy]-1,2,3,5,5a,6,9a,9b-octahydro-6-methoxy-8,9a-dimethyl-9Hbenz[$[e$]inden-9-one 51

To a solution of 47b ($690 \mathrm{mg}, 1.90 \mathrm{mmol}$) in THF (30 ml) at RT was added sodium hydride ($235 \mathrm{mg}, 9.50 \mathrm{mmol}$) and iodomethane ($1.2 \mathrm{ml}, 19 \mathrm{mmol}$). This was stirred at RT for 12 h . Icecold water (30 ml) was added, and this solution was extracted with ethyl acetate $(4 \times 50 \mathrm{ml})$. The combined extracts were washed with brine ($2 \times 40 \mathrm{ml}$), dried and concentrated under reduced pressure. Chromatography provided 51 ($614 \mathrm{mg}, 86 \%$) as a pale yellow oil: $v_{\max }($ film $) / \mathrm{cm}^{-1} 1712,1674$ and 1625 ; $\delta_{\mathrm{H}} 6.58(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 2.46-2.22 (m), 2.15-2.07 (m), 1.79 (3 H, s, 8-methyl), 1.73 $(1 \mathrm{H}, \mathrm{m}), 1.56-1.41(3 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}-\mathrm{methyl}), 0.93$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$ and $0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta_{\mathrm{C}} 203.0(\mathrm{C}-9)$, 139.8 (C-7), 137.8 (0), 135.4 (0), 120.8 (0), 76.1 (C-6), 57.0 $\left(\mathrm{OCH}_{3}\right), 49.4$ (1), 46.0 (1), 45.6 (C-9a), 30.8 (2), 29.9 (2), 25.7 $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2$ (9a-methyl), 23.1 (2), $18.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.2$ (8-methyl), $-4.0\left(\mathrm{SiCH}_{3}\right)$ and $-4.1\left(\mathrm{SiCH}_{3}\right) ; ~ m / z 376.2444\left(\mathrm{M}^{+}\right.$, $<1 \%, \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$ requires 376.2432), 361 (1), 280 (3), 225 (13), 205 (11), 152 (100), 112 (26), 75 (46) and 73 (35).

(3a $\alpha, 5 a \alpha, 6 \alpha, 9 a \alpha, 9 b a)-3 a-(1,3-D i t h i a n-2-y l)-1,2,3,3 a, 4,5,5 a, 6$, 9a,9b-decahydro-6-methoxy-8,9a-dimethyl-9H-benz[e]indene-4,9-dione 52

A solution of 1,3-dithienium tetrafluoroborate ($153 \mathrm{mg}, 0.744$ $\mathrm{mmol})$ in dry nitromethane $(1.0 \mathrm{ml})$ was added over 5 min to a solution of $51(140 \mathrm{mg}, 0.372 \mathrm{mmol})$ in dry dichloromethane $(3.0 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min before it was allowed to warm to RT. The mixture was added to a saturated aqueous NaHCO_{3} solution $(20 \mathrm{ml})$. This was extracted with ethyl acetate $(3 \times 40 \mathrm{ml})$. The
combined extracts were washed with brine (20 ml), dried and concentrated under reduced pressure. Chromatography of the residue gave $52(83.5 \mathrm{mg}, 59 \%)$ as a white solid: $\mathrm{mp} 226-228$ ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1745,1710$ and $1661 ; \delta_{\mathrm{H}} 6.69(1 \mathrm{H}, \mathrm{s}$, $7-\mathrm{H}), 4.84(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of dithiane), $3.65(1 \mathrm{H}, \mathrm{dt}, J 10.1$ and $2.0,6-\mathrm{H}), 3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.09(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 6.0$)$, $2.95(1 \mathrm{H}$, dd, $J 7.8$ and 3.1$), 2.89(1 \mathrm{H}, \mathrm{dt}, J 6.6$ and 1.5$)$, $2.84(1 \mathrm{H}, \mathrm{m}), 2.70(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and 2.5$), 2.59(1 \mathrm{H}$, dt, $J 14.1$ and 8.7$), 2.43(1 \mathrm{H}, \mathrm{m}), 2.13(2 \mathrm{H}, \mathrm{dq}, J 14.0$ and 3.3$)$, $1.88(1 \mathrm{H}$, ddd, $J 13.7,10.3$ and 3.1$), 1.81(3 \mathrm{H}, \mathrm{t}, J 1.6$, 8-methyl), 1.70 ($3 \mathrm{H}, \mathrm{s}$, 9a-methyl), 1.56 ($1 \mathrm{H}, \mathrm{m}$), 1.43 (1 H , dd, $J 12.6$ and 6.5$), 1.29(1 \mathrm{H}, \mathrm{m})$ and $0.96(1 \mathrm{H}, \mathrm{m})$; NOE data: $4.84(3.09,7 \% ; 1.70,9 \%), 1.70(4.84,11 \% ; 3.09,4 \%$; $2.43,5 \%) ; \delta_{\mathrm{C}} 210.0(\mathrm{C}-4), 201.0$ (C-9), 142.3 (C-7), 135.7 (C-8), $75.3(\mathrm{C}-6), 63.3(\mathrm{C}-3 \mathrm{a}), 57.8\left(\mathrm{OCH}_{3}\right), 56.5(\mathrm{C}-2$ of dithiane), 53.4 (1), 50.1 (1), 45.6 (C-9a), 36.4 (2), 31.8 (2), 31.1 (2, 2C), 27.9 (2), 26.2 (9a-methyl), 25.8 (2), 22.8 (2) and 16.3 (8-methyl); m/z $380.1484\left(\mathrm{M}^{+}, 1 \%, \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}_{2}\right.$ requires 380.1478), 262 (4), 221 (8), 152 (18), 149 (13), 135 (15), 119 (100), 112 (29) and 69 (15).

X-Ray crystal structure determination for $\mathbf{5 2}$

A colourless irregular crystal of dimensions $0.35 \times 0.10 \times 0.40$ mm was mounted on a glass fibre: $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~S}_{2}, M=380.56$, orthorhombic, $a=21.765(7), b=14.725(6), c=11.857(6) \AA$, $V=3800(2) \AA^{3}, T=299 \mathrm{~K}$, space group Pbca (no. 61), $Z=8$, $\mu(\mathrm{Cu}-\mathrm{K} \alpha) 26.67 \mathrm{~cm}^{-1}, 3219$ reflections collected, 2257 observed ($I>2.00 \sigma(I)$); $R=0.094, R_{w}=0.092$, goodness of fit $=6.93$.
$\left(1 R^{*}, 4 S^{*}, 5 R^{*}, 9 R^{*}, 10 S^{*}, 11 S^{*}, 12 R^{*}, 15 S^{*}\right)$-5-Hydroxy-7,9,12-trimethyl-14-oxapentacyclo $\left[8.6 .0 .0^{1,5} .0^{4,9} .0^{11,15}\right]$ hexadec-6-ene-2,8,13-trione 53

A solution of 1,3-dithienium tetrafluoroborate ($24.0 \mathrm{mg}, 0.116$ $\mathrm{mmol})$ in nitromethane $(1.0 \mathrm{ml})$ was added to a solution of $33(50.0 \mathrm{mg}, 0.116 \mathrm{mmol})$ in dry dichloromethane (3.0 ml) at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 20 min before it was allowed to warm to RT. Ethyl acetate (25 ml) was added, and this solution was washed with a saturated aqueous NaHCO_{3} solution $(2 \times 20 \mathrm{ml})$ and brine $(2 \times 20 \mathrm{ml})$. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Preparative TLC provided 53 ($18 \mathrm{mg}, 48 \%$) as colourless crystals: $\mathrm{mp}>220^{\circ} \mathrm{C}$ (dec.); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 3405,1748$ and $1669 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 7.00(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, removed with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.90(1 \mathrm{H}, \mathrm{t}, J 5.7), 2.80(1 \mathrm{H}, \mathrm{m}), 2.66-2.44$ $(3 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{d}, J 16.2), 2.08-2.01(3 \mathrm{H}, \mathrm{m}), 1.83(3 \mathrm{H}, \mathrm{d}$, $J 1.4,7$-methyl), 1.35 ($3 \mathrm{H}, \mathrm{s}, 9$-methyl) and 0.98 ($3 \mathrm{H}, \mathrm{d}, J 7.2$, 12-methyl); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ 209.0, 200.8, 178.0, 149.4, 138.3, $88.6,83.5,76.1,59.6,55.9,54.7,48.1,39.3,37.2,26.6,18.1,15.1$ and $12.1 ; m / z 316.1306\left(\mathrm{M}^{+}, 62 \%, \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}\right.$ requires 316.1310), 288 (10), 205 (18), 178 (17), 165 (36), 151 (100), 137 (14), 123 (12), 91 (13) and 79 (15).

X-Ray crystal structure determination for 53

A colourless irregular crystal of dimensions $0.40 \times 0.30 \times 0.15$ mm was mounted on a glass fibre: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}, M=316.35$, tetragonal, $a=9.055(3), c=18.635(6) \AA, V=1527.8(7) \AA^{3}, T=299$ K , space group $P 4_{3}$ (no. 78), $Z=4, \mu(\mathrm{Mo}-\mathrm{K} \alpha) 1.0 \mathrm{~cm}^{-1}, 1588$ reflections collected, 1409 unique ($R_{\text {int }}=0.022$); 1045 observed ($I>1.50 \sigma(I)$); $R=0.033, R_{w}=0.033$, goodness of fit $=1.36$.
(4a,4aß,7a $, 10 a \alpha, 10 b \beta, 10 c \beta)-6-[(1,1-D i m e t h y l e t h y l) d i m e t h y l-$ silyloxy]-4,4a,5,7,7a,10,10b,10c-octahydro-4-hydroxy-2,10c-dimethyl-1 H -benz[6,7]indeno[2,1-b]furan-1,9(10a H)-dione 54a and ($4 \alpha, 4 \mathrm{a} \alpha, 7 \mathrm{a} \beta, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha, 10 \mathrm{c} \alpha)$-6-[(1,1-dimethylethyl)dimethyl-silyloxy]-4,4a,5,7,7a,10,10b,10c-octahydro-4-hydroxy-2,10c-dimethyl- 1 H -benz[6,7]indeno[2,1-b]furan-1,9(10aH)-dione 54b
To a solution of $25(858 \mathrm{mg}, 2.06 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$(775 \mathrm{mg}, 2.06 \mathrm{mmol})$ in methanol $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added sodium borohydride ($55.7 \mathrm{mg}, 1.44 \mathrm{mmol}$) in small portions over 5 min . After stirring for another 2 min , dilute aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (40 ml) was added. This was extracted with ethyl acetate $(4 \times 40 \mathrm{ml})$. The combined extracts were washed with water $(2 \times 40 \mathrm{ml})$ and brine $(40 \mathrm{ml})$, dried and concentrated under reduced pressure. Chromatography of the residue provided a $1: 1$ epimeric mixture of alcohols $\mathbf{5 4 a}$ and $\mathbf{5 4 b}$ ($712 \mathrm{mg}, 83 \%$). Further careful chromatography did separate these isomers.

For 54a: pale yellow solid, mp $100-102{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 3422 and $1712 ; \delta_{\mathrm{H}} 6.38(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{dt}, J 6.2$ and 2.6 , $7 \mathrm{a}-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{dd}, J 6.3$ and 2.7), $2.82(1 \mathrm{H}$, dd, $J 17.7$ and 9.0$), 2.64(1 \mathrm{H}$, broad s), 2.57-2.45 (m), 2.41 (1 H, d, J 2.7), 2.35 (1 H, d, J2.4), 2.31-2.21 (m), 2.05-1.97 (1 H, m), 1.75 (3 H, s, 2-methyl), $1.29(3 \mathrm{H}, \mathrm{s}$, 10c-methyl), $0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data $3.89(5.05,7 \% ; 2.82,4 \%)$ and 1.29 (4.96, $12 \% ; 3.89,5 \%) ; \delta_{\mathrm{C}} 202.3$ (C-1), 177.4 (C-9), 142.1 (C-3), 140.6 (0), 133.9 (0), 117.3 (0), 86.0 (C-7a), 67.5 (C-4), 54.9 (10), 49.7 (1), 48.3 (C-10c), 41.2 (1), 37.6 (2), 34.4 (2), 28.6 (2), $25.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.4$ (10c-methyl), $17.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 15.8$ (2-methyl), $-3.8\left(\mathrm{SiCH}_{3}\right)$ and $-4.0\left(\mathrm{SiCH}_{3}\right) ; m / z 418.2191\left(\mathrm{M}^{+}\right.$, $5 \%, \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}$ requires 418.2174), 281 (8), 224 (15), 223 (25), 138 (100), 121 (20), 117 (18), 75 (95) and 73 (97).

For 54b: white solid, mp 128-130 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3416$, 1746,1708 and $1665 ; \delta_{\mathrm{H}} 6.54(1 \mathrm{H}, \mathrm{t}, J 1.7,3-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dt}$, $J 7.1$ and 2.6, 7a-H), $4.25(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $7.1,10 \mathrm{a}-\mathrm{H}), 2.86(1 \mathrm{H}$, apparent q, $J 8.6), 2.58(1 \mathrm{H}$, dd, $J 18.2$ and 8.3), 2.38-2.29 (m), 2.26-2.17 (m), 2.14-2.02 (m), $1.80(3 \mathrm{H}, \mathrm{s}, 2$-methyl), $1.41(3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}-$ methyl $), 0.93(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$ and $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$; NOE data: 4.91 (3.03, $4 \% ; 2.86,5 \%), 4.25(2.86,5 \%), 2.86(4.91,7 \%$; $4.25,5 \%)$ and $1.41(2.14-2.02,10 \%) ; \delta_{\mathrm{C}} 210.8(\mathrm{C}-1), 176.9(\mathrm{C}-9)$, 142.9 (C-3), 140.0 (0), 135.3 (0), 117.1 (0), 83.9 (C-7a), 67.0 (C-4), 51.9 (1), 48.8 (1), 45.6 (C-10c), 42.0 (1), 35.2 (2), 33.1 (2), 30.4 (2), $25.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.2\left(10 \mathrm{c}-\right.$ methyl), $18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 16.1 (2-methyl), $-4.0\left(\mathrm{SiCH}_{3}\right)$ and $-4.1\left(\mathrm{SiCH}_{3}\right) ; m / z 418.2198$ $\left(\mathrm{M}^{+}, 5 \%, \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}\right.$ requires 418.2174), 359 (9), 281 (13), 224 (7), 223 (15), 138 (100), 117 (10), 75 (61) and 73 (50).

(4 $\alpha, 4 a \beta, 6 a \beta, 7 a \alpha, 10 a \alpha, 10 b \beta, 10 c \beta)-4$-Acetoxy-6a-(1,3-dithian-2-yl)-4,4a,5,6a,7,7a,10,10a,10b,10c-decahydro-2,10c-dimethyl$1 H$-benz[6,7]indeno[2,1-b]furan-1,6,9-trione 56

The formation of $\mathbf{5 5}$ followed the same procedure as for $\mathbf{4 9}$. 1,3Dithienium tetrafluoroborate ($498 \mathrm{mg}, 2.42 \mathrm{mmol}$) in dry nitromethane $(2.0 \mathrm{ml})$ was added over 5 min to a solution of $55(371 \mathrm{mg}, 0.805 \mathrm{mmol})$ in dry dichloromethane $(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min before it was allowed to warm to RT. The mixture was poured into a saturated aqueous NaHCO_{3} solution (20 ml). This was extracted with ethyl acetate ($3 \times 40 \mathrm{ml}$). The combined organic extracts were washed with brine $(20 \mathrm{ml})$, dried and concentrated under reduced pressure. Compound 56 ($157 \mathrm{mg}, 42 \%$) was difficult to separate by chromatography from the hydrolysis by-product. For 56: mp 192-195 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1708$ and 1669 ; $\delta_{\mathrm{H}} 6.29(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{t}, J 6.4$, $7 \mathrm{a}-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of dithiane $), 3.62(1 \mathrm{H}, \mathrm{m}), 3.15(1 \mathrm{H}$, $\mathrm{m}), 2.98-2.82(6 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 2.38(1 \mathrm{H}$, ddd, $J 20.7$, 18.7 and 1.4), $2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 2.07(1 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}$, m), 1.74 (3 H, d, J 2.6, 2-methyl) and 1.46 ($3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}$-methyl); NOE data: $5.87(3.15,8 \% ; 1.46,10 \%)$ and $1.46(5.87,12 \% ; 3.62$, $8 \% ; 2.77,8 \%) ; \delta_{\mathrm{C}} 208.0(\mathrm{C}-6), 201.3$ (C-1), 176.6 (C-9), 170.1 $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 137.9(\mathrm{C}-3), 136.9(\mathrm{C}-2), 86.0(\mathrm{C}-7 \mathrm{a}), 69.7(\mathrm{C}-4)$, 63.0 (C-6a), 59.9 (1), 56.2 (C-2 of dithiane), 49.3 (C-10c), 44.6 (1), 42.2 (1), 38.7 (2), 38.3 (2), 37.8 (2), 32.2 (2), 31.5 (2), 25.3 (2), 22.1 (10c-methyl), $20.9\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and 15.7 (2-methyl); $m / z 464.1307\left(\mathrm{M}^{+},<1 \%, \mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}\right.$ requires 464.1326), 241 (2), 119 (100) and 43 (22).

(4 $, 4 \mathrm{a} \beta, 6 \mathrm{a} \beta, 7 \mathrm{a} \alpha, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \beta, 10 c \beta)-6 \mathrm{a}-(1,3-$ Dithian-2-yl)-4,4a,5,6a,7,7a,10,10a,10b,10c-decahydro-4-hydroxy-2,10c-dimethyl-1 H -benz[6,7]indeno[2,1-b]furan-1,6,9-trione 57

To a solution of $\mathbf{5 6}(35 \mathrm{mg}, 0.075 \mathrm{mmol})$ in methanol $(2.0 \mathrm{ml})$ was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(105 \mathrm{mg}, 0.753 \mathrm{mmol})$ in water $(1.0 \mathrm{ml})$. The mixture was stirred at RT for 2 h . Ethyl acetate $(100 \mathrm{ml})$ was added and the solution was washed with 1% aqueous $\mathrm{HCl}(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The solution was dried and concentrated under reduced pressure. Chromatography of the product provided $57(22.5 \mathrm{mg}, 80 \%)$ as a white solid: mp 264 $267{ }^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1713$ and $1674 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 6.41$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 4.99(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 4.66(1 \mathrm{H}$, broad s, 4-H$), 4.43$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of dithiane), $3.44(1 \mathrm{H}, \mathrm{m}), 2.94-2.70(\mathrm{~m}), 2.62$ (1 H, d, J 5.1), $2.53(1 \mathrm{H}$, dd, $J 15.6$ and 4.2$), 2.48(1 \mathrm{H}, \mathrm{m}), 2.38$ ($1 \mathrm{H}, \mathrm{dd}, J 18.0$ and 1.8), $2.25(1 \mathrm{H}, \mathrm{d}, J 15.0), 2.10(1 \mathrm{H}, \mathrm{dd}$, $J 17.1$ and 7.8), $2.01(1 \mathrm{H}, \mathrm{m}), 1.60(3 \mathrm{H}, \mathrm{s}, 2-m e t h y l)$ and 1.31 ($3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}-$ methyl); NOE data 4.99 (3.44, 7\%; 2.48, 2\%), 4.43 (2.94-2.70, 6\%; 2.62, 4\%) and 1.31 (4.66, 7\%; 3.44, 6\%; 2.62, $6 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right) 208.5(\mathrm{C}-6), 202.5(\mathrm{C}-1), 177.0(\mathrm{C}-9)$, 144.7 (C-3), 133.7 (C-2), 85.0 (C-7a), 65.6 (C-4), 63.2 (C-6a), 60.5 (1), 56.0 (C-2 of dithiane), 48.7 (C-10c), 46.6 (1), 41.6 (1), 37.1 (2), 37.0 (2), 31.0 (2), 30.8 (2), 25.5 (2), 22.3 (10c-methyl) and 15.6 (2-methyl); $m / z 422.1229\left(\mathrm{M}^{+},<1 \%, \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}_{2}\right.$ requires 422.1229), 286 (1), 241 (4), 119 (100) and 57 (12).
$\left(1 R^{*}, 2 R^{*}, 3 R^{*}, 4 R^{*}, 8 S^{*}, 10 S^{*}, 11 S^{*}, 13 S^{*}, 14 R^{*}\right)$-14-Acetoxy-10-(1,3-dithian-2-yl)-11-hydroxy-2,16-dimethyl-7,17-dioxapentacyclo[9.5.1.0 ${ }^{2,13} \cdot 0^{3,10} \cdot 0^{4,8}$]heptadec-15-en-6-one 58
To a solution of $\mathbf{5 6}(34.5 \mathrm{mg}, 0.074 \mathrm{mmol})$, in $1: 1$ methanoldichloromethane $(4 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added sodium borohydride $(4.3 \mathrm{mg}, 0.11 \mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , then at RT for 2 h . The mixture was poured into a dilute aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{ml})$, which was extracted with ethyl acetate $(4 \times 20 \mathrm{ml})$. The combined extracts were washed with brine (20 ml), dried and concentrated under reduced pressure. Chromatography gave $58(27.5 \mathrm{mg}, 80 \%)$ as a white solid: mp $242-243.5^{\circ} \mathrm{C}$; $v_{\text {max }}$ (Nujol)/ $\mathrm{cm}^{-1} 1765$ and $1714 ; \delta_{\mathrm{H}} 5.42(1 \mathrm{H}, \mathrm{m}$, $14-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$ of dithiane), 3.62 ($1 \mathrm{H}, \mathrm{d}, J 1.3,1-\mathrm{H}), 3.03-2.85(3 \mathrm{H}, \mathrm{m})$, 2.83-2.72 (3 H, m), 2.53-2.45 (2 H, m), $2.38(1 \mathrm{H}, \mathrm{m}), 2.21-1.94$ $(4 \mathrm{H}, \mathrm{m}), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 1.86(3 \mathrm{H}, 16-m e t h y l)$ and 0.93 ($3 \mathrm{H}, 2$-methyl); NOE data: $2.38(5.42,8 \% ; 4.14,7 \%)$ and 0.93 (5.42, 12%; 3.62, $5 \% ; 3.03-2.85,5 \% ; 2.53-2.45,6 \%) ; \delta_{\mathrm{C}} 176.6$ (0), 170.8 (0), 138.4 (C-16), 121.7 (C-15), 98.2 (C-11), 86.3 (C-8), 74.5 (C-1), 71.6 (C-14), 58.8 (C-10), 58.7 (1), 57.9 (C-2 of dithiane), 41.1 (1), 37.3 (1), 36.2 (2), 35.3 (2), 31.8 (2), 31.3 (2), 25.5 (2), 21.5 (16-methyl), $21.2\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and 18.2 (2-methyl); $m / z 466.1493\left(\mathrm{M}^{+}, 2 \%, \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{~S}_{2}\right.$ requires 466.1484), 243 (11), 119 (100) and 43 (21).

(2 $\alpha, 4 a \beta, 6 a \alpha, 7 a \beta, 10 \beta, 10 a \beta, 10 b \alpha, 10 c \alpha)-2,4 a, 5,6 a, 7,7 a, 10,10 a$, $10 \mathrm{~b}, 10 \mathrm{c}$-Decahydro-2,10,10c-trimethyl-3 H -benz[6,7]indeno-[2,1-b]furan-1,4,6,9-tetraone 59

To a solution of $\mathbf{4 3}(80 \mathrm{mg}, 0.25 \mathrm{mmol})$ in glacial acetic acid $(10 \mathrm{ml})$ heated under reflux was added zinc dust (0.98 g , 15 mmol) in portions until the solution was colourless and TLC indicated that 43 was completely consumed. The mixture was heated under reflux for an additional 7 h . The mixture was filtered, and the filtrate was poured into ethyl acetate $(100 \mathrm{ml})$ and water (40 ml). Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until CO_{2} evolution ceased. The aqueous layer was re-extracted with ethyl acetate $(2 \times 15 \mathrm{ml})$. The combined organic layers were washed with water $(2 \times 30 \mathrm{ml})$ and brine $(30 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue gave a $6: 1$ ratio of $\mathbf{5 9}$ and $\mathbf{6 0}$ (combined 62 mg , 76%). Crystallization from dichloromethane and ethyl acetate gave a small sample of homogeneous $\mathbf{5 9}$ as a solid: $\mathrm{mp}>220^{\circ} \mathrm{C}$ (dec.); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1754$ and $1705 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 4.80(1 \mathrm{H}$,
apparent broad q, $J 7.5,7 \mathrm{a}-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 7.1 , $4 \mathrm{a}-\mathrm{H}), 3.02-2.89[3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}(\mathrm{m}), 6 \mathrm{a}-\mathrm{H}(\mathrm{t})$ and $7 \beta-\mathrm{H}(\mathrm{dd})]$, $2.84(1 \mathrm{H}, \mathrm{dd}, J 19.0$ and $7.5,3 \beta-\mathrm{H}), 2.82(1 \mathrm{H}$, dd, $J 9.5$ and 7.0 , 10b-H), 2.61-2.58 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), $2.49(1 \mathrm{H}, \mathrm{qd}, J 7.5$ and 3.6 , $10-\mathrm{H}), 2.26(1 \mathrm{H}$, dd, $J 19.0$ and $12.6,3 \alpha-\mathrm{H}), 1.98(1 \mathrm{H}$, apparent dt, $J 9.5$ and $3.6,10 \mathrm{a}-\mathrm{H}), 1.51(1 \mathrm{H}, \mathrm{m}, 7 \alpha-\mathrm{H}), 1.30(3 \mathrm{H}, \mathrm{s}$, 10c-methyl), 1.17 ($3 \mathrm{H}, \mathrm{d}, J 6.2$, 2-methyl) and 1.11 ($3 \mathrm{H}, \mathrm{d}$, $J 7.5,10$-methyl); NOE data: 4.80 (3.02-2.89 [7ß-H], $3 \% ; 1.98$, 4%), 3.43 (3.02-2.89 [2-H], 6\%; 2.61-2.58, 1\%; 1.98, 9\%), 1.98 (4.80, 5\%; 3.43, 9\%; 1.11, 1\%), 1.30 (3.02-2.89 [6a-H], 5\%; 2.82, 16%; 2.61-2.58, $5 \% ; 2.26,2 \%$), 1.17 (3.02-2.89 [2-H], 6\%; 2.26, 3%) and 1.11 (2.49, 4\%; 1.98, 4\%); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 212.8$ (0), 208.7 (0), 206.7 (0), 179.9 (C-9), 81.7 (C-7a), 56.3 (C-10b), 50.5 (C-6a), 49.5 (C-4a), 48.0 (C-10c), 47.2 (C-10a), 42.5 (C-3), 42.3 (C-2), 42.2 (C-10), 36.7 (C-5), 32.5 (C-7), 21.8 (10c-methyl), 18.2 (10-methyl) and 13.8 (2-methyl); $m / z 318.1446$ ($\mathrm{M}^{+}, 22 \%$, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1466), 221 (7), 207 (100), 179 (12), 161 (27), 152 (19), 121 (14), 112 (15), 109 (17), 93 (16), 55 (41), 42 (32) and 41 (45).

X-Ray crystal structure determination for 599

A colourless irregular crystal of dimensions $0.40 \times 0.20 \times 0.20$ mm was mounted on a glass fibre: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}, M=318.37$, monoclinic, $a=6.942(7), b=27.82(1), c=7.998(4) \AA, \beta$ $94.95(7)^{\circ}, V=1539(2) \AA^{3}, T=299 \mathrm{~K}$, space group $P 2{ }_{1} / n$ (no. 14), $Z=4, \mu(\mathrm{Mo}-\mathrm{K} \alpha) 0.99 \mathrm{~cm}^{-1}, 3045$ reflections collected, 2809 unique ($R_{\text {itt }}=0.121$); 1331 observed ($I>2.00 \sigma(I)$); $R=0.093, R_{w}=0.094$, goodness of fit $=3.21$.

(2 $\alpha, 4 a \beta, 6 a \beta, 7 a \alpha, 10 \alpha, 10 a \alpha, 10 b \beta, 10 c \beta)-2,4 a, 5,6 a, 7,7 a, 10,10 a$, 10b,10c-Decahydro-2,10,10c-trimethyl-3H-benz[6,7]indeno-[2,1-b]furan-1,4,6,9-tetraone 60

To a solution of $\mathbf{4 3}(28 \mathrm{mg}, 0.089 \mathrm{mmol})$ in acetone (2.0 ml) was added in small portions a 20% aqueous solution of TiCl_{3} $(0.24 \mathrm{ml}, 0.38 \mathrm{mmol})$ at RT. The solution was stirred for 20 min before it was poured into 25 ml of brine. This was extracted with ethyl acetate $(3 \times 15 \mathrm{ml})$. The combined organic solutions were washed with water (20 ml) and brine (20 ml), dried and concentrated under reduced pressure. Chromatography of the residue provided $60(14 \mathrm{mg}, 50 \%)$ as a white solid: $178-180^{\circ} \mathrm{C}$; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1770$ and $1710 ; \delta_{\mathrm{H}} 4.78(1 \mathrm{H}$, apparent $\mathrm{q}, J 7.2$, $7 \mathrm{a}-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.05-2.92(4 \mathrm{H}$, $\mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $7.7,10 \mathrm{~b}-\mathrm{H}), 2.53(1 \mathrm{H}, \mathrm{m}, 5 \beta-\mathrm{H})$, $2.49(1 \mathrm{H}, \mathrm{dq}, J 9.5$ and $5.0,10-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{dd}, J 19.6$ and 13.4, $3 \alpha-\mathrm{H}$), 1.68 ($3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}-$ methyl), 1.67 ($1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}$), $1.58(1 \mathrm{H}, \mathrm{m}, 7 \beta-\mathrm{H}), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.4,2$-methyl) and 1.13 ($3 \mathrm{H}, \mathrm{d}, J 7.5,10$-methyl); NOE data: 3.49 (3.27, $6 \% ; 2.53,1 \%$; $1.68,1 \%$) and $1.20\left(3.27,8 \% ; 2.26,2 \%\right.$); $\delta_{\mathrm{C}} 211.9$ (0), 207.0 (0), 206.2 (0), 179.3 (C-9), 81.6 (C-7a), 55.4 (C-10b), 54.1 (C-4a), 49.6 (C-6a), 47.92 (C-10c), 47.87 (C-10a), 42.3 (C-3), 41.9 (C10), 39.0 (C-2), 34.6 (C-5), 31.9 (C-7), 28.0 (10c-methyl), 17.6 (10-methyl) and 13.6 (2-methyl); m/z 318.1447 ($\mathrm{M}^{+}, 44 \%$, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1466), 290 (11), 276 (17), 248 (12), 245 (11), 231 (22), 221 (18), 207 (100), 161 (22), 152 (46), 109 (36), 99 (32), 93 (37), 91 (32), 79 (42), 77 (32), 69 (51), 55 (91), 42 (77) and 41 (84).
(2a,4aß,6ac,7aß,9a,10阝,10aß,10ba,10c α)-4a,5,6a,7,7a,9,10,10a, 10b,10c-Decahydro-2,9,10,10c-tetramethyl-3H-benz[6,7]indeno-[2,1-b]furan-1 (2H),4,6-trione 61
A solution of $\mathbf{4 2}(0.258 \mathrm{~g}, 0.781 \mathrm{mmol})$ in glacial acetic acid $(40 \mathrm{ml})$ heated under reflux as zinc dust $(1.45 \mathrm{~g}, 21.7 \mathrm{mmol})$ was added in portions until the solution became colourless and TLC indicated that $\mathbf{4 2}$ was completely consumed. The mixture

[^1]was heated for another 10 h . After cooling, the mixture was filtered, and the filtrate was added to ethyl acetate (80 ml) and water (80 ml). Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until CO_{2}-evolution ceased. The aqueous layer was re-extracted with ethyl acetate $(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with water (30 ml) and brine (30 ml), dried and concentrated under reduced pressure. Chromatography of the residue provided $\mathbf{6 1}$ ($50 \mathrm{mg}, 20 \%$) as a colourless solid: $\mathrm{mp} 179-181^{\circ} \mathrm{C}$; $v_{\text {max }}$ (Nujol)/ $\mathrm{cm}^{-1} 1709 ; \delta_{\mathrm{H}} 4.36(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and 6.5 , $4 \mathrm{a}-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{dq}, J 8.8$ and $6.1,9-\mathrm{H}), 3.06(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.05(1 \mathrm{H}, \mathrm{t}, J 7.7,6 \mathrm{a}-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and $7.0,3 \beta-\mathrm{H})$, $2.81(1 \mathrm{H}, \mathrm{dd}, J 12.6$ and $6.9,10 \mathrm{~b}-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, J 13.6$ and $7.7,7 \beta-\mathrm{H}), 2.59\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 2.26(1 \mathrm{H}, \mathrm{dd}, J 19.6$ and 13.4, $3 \alpha-\mathrm{H}), 1.70(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}), 1.57-1.49(2 \mathrm{H}, \mathrm{m}, 7 \alpha-\mathrm{H}$ and $10-\mathrm{H}), 1.30(3 \mathrm{H}, \mathrm{s}, 10 \mathrm{c}-\mathrm{methyl}), 1.23(3 \mathrm{H}, \mathrm{d}, J 6.1$, 9-methyl), 1.20 ($3 \mathrm{H}, \mathrm{d}, J 6.4,2$-methyl) and 0.80 ($3 \mathrm{H}, \mathrm{d}, J 6.7$, 10-methyl); NOE data 4.36 (3.42, 4\%; 2.74, 4\%; 1.70, 3\%), 3.52 ($3.06,7 \% ; 1.70,6 \%$), $1.70(4.36,5 \% ; 3.52,10 \% ; 0.80,1 \%), 1.30$ ($3.05,8 \% ; 2.81,6 \%, 2.59,6 \%$) and $0.80(3.42,4 \% ; 3.06,2 \%$; $1.70,3 \% ; 1.57-1.49,2 \%$); $\delta_{\mathrm{C}} 212.0$ (0), 209.1 (0), 207.0 (0), 85.8 (C-9), 83.1 (C-7a), 55.7 (C-10b), 53.2 (C-10a), 53.1 (C-6a), 48.9 (C-4a), 47.5 (C-10c), 47.4 (C-10), 42.0 (C-3), 41.5 (C-2), 36.2 (C-5), 30.3 (C-7), 21.8 ($10 \mathrm{c}-$ methyl), 18.7 (9-methyl), 17.0 (10-methyl) and 13.4 (2-methyl); $m / z \quad 318.1839\left(\mathrm{M}^{+}, 12 \%\right.$, $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ requires 318.1831), 207 (9), 178 (10), 161 (23), 152 (11), 136 (10), 121 (14), 112 (100), 97 (68), 55 (37), 43 (52) and 41 (35).

Acknowledgements

We are very grateful to Mr David O. Miller of this Department for the X-ray crystal structures. This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

1 R. Baker and S. Walmsley, Tetrahedron, 1982, 38, 1899; G. D. Prestwich, Tetrahedron, 1982, 38, 1911; K. Nakanishi, T. Goto, S. Itô, S. Natori and S. Nozoe, Natural Products Chemistry, vol. 3, Oxford University Press, Oxford, 1983, pp. 136-138.
2 G. D. Prestwich, S. G. Spanton, J. W. Lauher and J. Vrkoč, J. Am. Chem. Soc., 1980, 102, 6825.

3 W. G. Dauben, I. Farkas, D. P. Bridon, C.-P. Chuang and K. E. Henegar, J. Am. Chem. Soc., 1991, 113, 5883.
4 L. A. Paquette, D. R. Sauer, D. G. Cleary, M. A. Kinsella, C. M. Blackwell and L. G. Anderson, J. Am. Chem. Soc., 1992, 114, 7375; D. F. Taber, Tetrahedron Lett., 1993, 34, 1883.

5 P. Metz, S. Bertels and R. Fröhlich, J. Am. Chem. Soc., 1993, 115, 12595.

6 C. Liu and D. J. Burnell, J. Am. Chem. Soc., 1997, 119, 9584
7 E. J. Corey and T. Ravindranathan, Tetrahedron Lett., 1971, 4753.
8 K. E. Harding, J. B. Strickland and J. Pommerville, J. Org. Chem., 1988, 53, 4877.
9 M. Ihara, Y. Ishada, K. Fukumoto and T. Kametani,, Chem. Pharm. Bull., 1985, 33, 4102; L. N. Mander and S. P. Sethi, Tetrahedron Lett., 1984, 25, 5953.
10 C. Schmidt, S. D. Sabnis, E. Schmidt and D. K. Taylor, Can. J. Chem., 1971, 49, 371; R. A. Dickinson, R. Kubela, G. A. MacAlpine, Z̆. Stojanac and Z. Valenta, Can. J. Chem., 1972, 50, 2377; F. Bohlmann, W. Mathar and H. Schwartz, Chem. Ber., 1977, 110, 2028; J. Das, R. Kubela, G. A. MacAlpine, Z̆. Stojanac and Z. Valenta, Can. J. Chem., 1979, 57, 3308.

11 M. J. Fisher, W. J. Hehre, S. D. Kahn and L. E. Overman, J. Am. Chem. Soc., 1988, 110, 4625.
12 I. Paterson and I. Fleming, Tetrahedron Lett., 1979, 995.
13 A. J. Ragauskas and J. B. Stothers, Can. J. Chem., 1985, 63, 2969; A. Abad, C. Agulló, M. Arnó, A. C. Cuñat, B. Meseguer and R. J. Zaragozá, J. Org. Chem., 1998, 63, 5100.
14 W. P. Weber, Silicon Reagents for Organic Synthesis, Springer, New York, 1983, pp. 235-238.
15 C. Liu and D. J. Burnell, J. Org. Chem., 1997, 62, 3683.
16 I. Paterson and L. G. Price, Tetrahedron Lett., 1981, 22, 2829.
17 C. Liu and D. J. Burnell, Tetrahedron Lett., 1997, 37, 6573.
18 L. C. Blaszczak and J. E. McMurry, J. Org. Chem., 1974, 39, 258.

[^0]: \ddagger The IUPAC name for triflate is trifluoromethanesulfonate.

[^1]: 『 CCDC reference number(s) 164940-164942. See http://www.rsc.org/ suppdata/pl/bl/b104924k/ for crystallographic files in .cif or other electronic format.

